
Please visit

the Web sites

of our

advertising

partners

who make it

possible for us

to bring you this

Digital Edition

(PDF) of JDJ

ADVERTISER URL PH PG
ADVERTISER INDEX

4TH PASS WWW.4THPASS.COM 877-484-7277 89
ADRENALINE WWW.ADRENALINE.COM 12

ADVANCED DATA, INC. WWW.JVSEARCH.COM 46
AFFINITY WWW.AFFINITY.COM/RESELLER 800-646-0662 41
AIR2WEB WWW.AIR2WEB.COM 404-815-7707 25

AVANTSOFT WWW.AVANTSOFT.COM/SEMINAR 408-530-8705 40
BEA DEVELOPER.BEA.COM 408-570-8000 17

CAPE CLEAR WWW.CAPECLEAR.COM 33
CAREER OPPORTUNITY ADVERTISERS 800-846-7591 114-137

CEREBELLUM SOFTWARE WWW.CEREBELLUMSOFT.COM 888-862-9898 63
CODEMARKET WWW.CODEMARKET.COM 646-486-7346 99

COMPUTERWORK.COM WWW.COMPUTERWORK.COM 800-691-8413 52
COMPUWARE WWW.COMPUWARE.COM/NUMEGA 800-4-NUMEGA 35

CORDA TECHNOLOGIES WWW.CORDA.COM 802-802-0800 69
CTIA WIRELESS IT 2000 WWW.WIRELESSIT.COM 202-736-3241 105

CYSCAPE WWW.CYSCAPE.COM/BHFREE 800-932-6869 52
ELIXIR TECHNOLOGY WWW.ELIXIRTECH.COM/DOWNLOAD 65 532-4300 107
ENSEMBLE SYSTEMS WWW.ENSEMBLE-SYSTEMS.COM 877-290-2662 38

ESMERTEC WWW.ESMERTEC.COM 27
FATBRAIN.COM WWWL.FATBRAIN.COM/FBT/OFFERS/JAVADEV 21

FIORANO WWW.FIORANO.COM 800-663-3621 81
FLASHLINE.COM, INC. WWW.FLASHLINE.COM 800-259-1961 67

FORT POINT PARTNERS, INC. WWW.FORTPOINT.COM 415-395-4400 19
GEMSTONE WWW.GEMSTONE.COM 503-533-3000 57

GENERIC LOGIC, INC. WWW.GENLOGIC.COM 413-253-7491 89
HIT SOFTWARE WWW.HIT.COM 408-345-4001 73

IAM CONSULTING WWW.IAMX.COM 212-580-2700 85
INETSOFT TECHNOLOGY CORP WWW.INETSOFTCORP.COM 908-755-0200 75

INSTANTIATIONS, INC. WWW.INSTANTIATIONS.COM 800-808-3737 87
INT WWW.INT.COM 713-975-7434 22

INTERNET WORLD FALL 2000 WWW.PENTONEVENTS.COM 800-500-1959 112-113
INTUITIVE SYSTEMS, INC WWW.OPTIMIZEIT.COM 408-245-8540 101

JAVA DEVELOPER'S JOURNAL WWW.JAVADEVELOPERSJOURNAL 201-802-3020 58,111
KL GROUP INC WWW.KLGROUP.COM/GREAT 888-361-3264 15
KL GROUP INC WWW.KLGROUP.COM/FASTER 888-361-3264 53
KL GROUP INC WWW.KLGROUP.COM/MASTER 888-361-3264 95
KL GROUP INC WWW.KLGROUP.COM/DEPLOY 800-663-4723 140

NO MAGIC WWW.MAGICDRAW.COM 303-914-8074 7
NORTHWOODS SOFTWARE CORPORATION WWW.NWOODS.COM 800-226-4662 102

OOP.COM WWW.OOP.COM 877-667-6070 37
PACIFIC NORTHWEST NATIONAL LABORATORY WWW.PNNL-SOFTWARE.COM 509-946-1110 47

PARASOFT WWW.PARASOFT.COM/JDJ_OCT.HTM 61
POINTBASE WWW.POINTBASE.COM/JDJ 877-238-8798 43
PRAMATI WWW.PRAMATI.COM 408-965-5513 83

PROGRAMMER'S PARADISE PROGRAMMERSPARADISE.COM/VISUALSOFT 800-516-0101 29
PROGRESS SOFTWARE WWW.SONICMQ.COM/AD11.HTM 800-989-3773 2

PROTOVIEW WWW.PROTOVIEW.COM 800-231-8588 3,97
QUADBASE WWW.QUADBASE.COM 408-982-0835 45

QUICKSTREAM SOFTWARE WWW.QUICKSTREAM.COM 888-769-9898 109
SANDSTONE TECHNOLOGY WWW.SAND-STONE.COM 858-454-9404 40

SEGUE SOFTWARE WWW.SEGUE.COM 800-287-1329 11,13
SIC CORPORATION WWW.SIC21.COM 822.227.398801 91
SIERRA SYSTEMS WWW.SIERRASYSTEMS.COM 59

SLANGSOFT WWW.SLANGSOFT.COM 972-2-648-2424 139
SOFTWARE AG WWW.SOFTWAREAG.COM/TAMINO 925-472-4900 79
SOFTWIRED WWW.SOFTWIRED-INC.COM 41-14452370 65

THESHORTLIST WWW.THESHORTLIST.COM 877-482-8827 39,47
THINAIRAPPS WWW.THINAIRAPPS.COM/JAVA 888-609-THIN 49

TIDESTONE TECHNOLOGIES WWW.TIDESTONE.COM 913-851-2200 77
TOGETHERSOFT CORPORATION WWW.TOGETHERSOFT.COM 919-833-5550 6

UNIFY CORPORATION WWW.UNIFYEWAVE.COM 800-GO UNIFY 93
VERGE TECHNOLOGIES GROUP, INC. WWW.EJIP.NET 303-998-1027 103

VERIO WWW.DEDICATEDSERVER.COM 877-624-7897 23
VIRTUALSCAPE WWW.VIRTUALSCAPE.COM 877-VSCAPE4 31

VISICOMP WWW.VISICOMP.COM/JDJ10 831-335-1820 51
VISUALIZE INC. WWW.VISUALIZEINC.COM/JDJ 602-861-0999 58

WEBGAIN WWW.WEBGAIN.COM 408-517-3815 4,55

Feature: Using Space-Based Programming Tarak Modi

for Loosely Coupled Distributed Systems
Any number of processes can communicate via a common space 8

CORBA Corner: CORBA for Real-Time Jon Siegel

Systems Plus...news from OMG 14

Feature:Writing Custom JSP Tag Libraries Adam Chace
Learn how to abstract complex business logic from UI design 28

UNIX Overview: Using JNI for Safer Java Servers Micah Silverman

Under UNIX Create a test Java application 42

Feature: Java & Security Java 1.2 Security P.G. Ramachandran
Manager facilitates fine-grained security policies 48

Feature: Implementing a Lightweight Web Keith Majkut &

Server for Resource Pooling and Scalability Vivek Sharma
Optimize usage of your database 60

VAR: Developing Web Applications Using Anita Huang &

VisualAge for Java and WebSphere Studio Tim deBoer
Build the client side of an application PART 2 86

Java & Swing:Working with Swing Paul Andrews
Developing a splash screen component 104

October 2000 Volume:5 Issue:10

The World’s Leading Java Resource

TM

USING SPACE BASED PROGRAMMING

by Kuassi Mensah
page 94

SYS-CON
MEDIA

Java COM

From the Editor
by Sean Rhody pg. 5

Guest Editorial
by Keith Sciulli pg. 7

Java Basics
by Robert J. Brunner pg. 24

Java Techniques
by Nathan Cuka pg. 54

Product Review
eWave Studio

and ServletExec
by Jim Milbery pg. 76

Java Components
by Pat Paternostro pg. 80

Industry Watch
by Alan Williamson pg. 20

November 12–15, 2000

December 3–5, 2000
Announcing...

Interviews
Paul Chambers

of GemStone pg. 84
Shawn Mitchell

of CodeMarket pg. 110

Process 3

Process 2

Process 1

Space

1: Process 1
writes to
the space 4: Process 3

takes from
the space

2: Process 2
takes from
the space

3: Process 2
writes to
the space

SERVERCLIENT

RT_CORBA::
Priority

RT_CORBA::
ThreadPool

Servant

POA

Scheduling
Service

RT POA

RT_CORBA::
Current

CORBA::
Current

Leve
l Ser

vlet
(Jav

a)

Auth
Serv

let (
Java

)

Auth
Modul

e ('C
')

CentralServer

Connection Pool

5OCTOBER 2000

Java COM

E D I T O R I A L A D V I S O R Y B O A R D
TED COOMBS, BILL DUNLAP, DAVID GEE, MICHEL GERIN,

ARTHUR VAN HOFF, JOHN OLSON, GEORGE PAOLINI, KIM POLESE,
SEAN RHODY, RICK ROSS, AJIT SAGAR, RICHARD SOLEY, ALAN WILLIAMSON

EDITOR-IN-CHIEF: SEAN RHODY
EXECUTIVE EDITOR: M’LOU PINKHAM

ART DIRECTOR: ALEX BOTERO
MANAGING EDITOR: CHERYL VAN SISE

EDITOR/COPY CHIEF: NANCY VALENTINE
ASSOCIATE EDITOR: JAMIE MATUSOW

EDITORIAL CONSULTANT: SCOTT DAVISON
TECHNICAL EDITOR: BAHADIR KARUV

PRODUCT REVIEW EDITOR: ED ZEBROWSKI
INDUSTRY NEWS EDITOR: ALAN WILLIAMSON

E-COMMERCE EDITOR: AJIT SAGAR

W R I T E R S I N T H I S I S S U E
PAUL ANDREWS, ROBERT J. BRUNNER, ADAM CHACE, NATHAN CUKA,
TIM DEBOER, ISRAEL HILERIO, ANITA HUANG, KEITH MAJKUT, JIM

MILBERY, TARAK MODI, PAT PATERNOSTRO, P.G. RAMACHANDRAN, SEAN
RHODY, VIVEK SHARMA, JON SIEGEL, MICAH SILVERMAN, ALAN WILLIAMSON

S U B S C R I P T I O N S
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: 800 513-7111
COVER PRICE: $4.99/ISSUE

DOMESTIC: $49/YR. (12 ISSUES) CANADA/MEXICO: $69/YR.
OVERSEAS: BASIC SUBSCRIPTION PRICE PLUS AIRMAIL POSTAGE

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $12 EACH

PRESIDENT AND CEO: FUAT A. KIRCAALI
VICE PRESIDENT, PRODUCTION: JIM MORGAN

VICE PRESIDENT, MARKETING: CARMEN GONZALEZ
GROUP PUBLISHER: LISE ST. AMANT

COMPTROLLER: BRUCE N. MILLER
ADVERTISING ACCOUNT MANAGERS: ROBYN FORMA

MEGAN RING
ASSOCIATE SALES MANAGER: CARRIE GEBERT

ADVERTISING ASSISTANT: CHRISTINE RUSSELL
GRAPHIC DESIGNERS: ABRAHAM ADDO

CATHRYN BURAK
GRAPHIC DESIGN INTERNS: AARATHI VENKATARAMAN

LOUIS F. CUFFARI
WEBMASTER: ROBERT DIAMOND

WEB DESIGNERS: STEPHEN KILMURRAY
GINA ALAYYAN

SYS-CON EVENTS MANAGER: ANTHONY D. SPITZER
JDJSTORE.COM: AMANDA MOSKOWITZ

CUSTOMER SERVICE: ELLEN MOSKOWITZ

E D I T O R I A L O F F I C E S
SYS-CON PUBLICATIONS, INC.

135 CHESTNUT RIDGE ROAD, MONTVALE, NJ 07645
TELEPHONE: 201 802-3000 FAX: 201 782-9600

SUBSCRIBE@SYS-CON.COM
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944)

is published monthly (12 times a year) for $49.00 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

Periodicals Postage rates are paid at
Montvale, NJ 07645 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

135 Chestnut Ridge Road, Montvale, NJ 07645.

© C O P Y R I G H T
Copyright © 2000 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact reprint
coordinator. SYS-CON Publications, Inc., reserves the right to revise, republish and

authorize its readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y
CURTIS CIRCULATION COMPANY

730 RIVER ROAD, NEW MILFORD NJ 07646-3048 PHONE: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
MEDIA

SEAN RHODY, EDITOR-IN-CHIEF

L
ately I’ve received a number of e-mails and had conversations regarding J2EE compliance
and what it means to the industry. Each conversation or message has a slightly different
slant depending on whether the person on the other end is a vendor or a reader or a col-
league. What almost everyone seems to agree on is that the J2EE standard has done more to
create a basic parity among vendors than any other event in the short but colorful history
of Java.

Parity excites end users (in this case developers or IT departments) and depresses vendors.
IT departments love the portability of J2EE because it allows them to move from one vendor
to another as they see fit. Vendors dislike parity because it reduces their ability to charge pre-
miums – they’re selling a commodity.

To avoid the commodity problem, vendors naturally attempt to differentiate themselves
from one another by providing additional features and new functionality. With J2EE this is a
complex task and one fraught with danger. Yet there are several areas where vendors can add
value without necessarily forsaking compliance with the specification. It’s this differentiation
that in fact will drive IT users to move from one implementation to another as they look for
specific features. In a sense, the very cause of commoditization is also the driver behind spe-
cialization.

I see a number of areas that vendors will be likely to address as they begin the process of
differentiating themselves. For lack of a better name I’ve termed this J2001 – next year’s J2EE.
This has nothing to do with the EJB 2.0 specification or anything else official: it’s my own word.
What follows is my view of what’s likely to be used to sell products in 2001.

Clustering capabilities will be highlighted as vendors continue to push on the topics of reli-
ability, availability and scalability. Some vendors are pursuing multiple VMs running on a sin-
gle machine (or processor) as a way of achieving better clustering. Others are clustering at the
machine level. I expect major players in the industry to have a clustered solution and for them
to beat on each other about which one is best. I wouldn’t be surprised to see integration of
hardware clustering solutions as the logical next step in the quest for speed and scalability.

Personalization services will become a hot topic. Let’s face it – the Web abounds with per-
sonalized sites. The integration of personalization into product offerings will be another area
where vendors begin to establish dominance. The degree of integration and flexibility of per-
sonalization will be vital in determining the best solution.

Closely aligned with personalization but truly another topic is the idea of business rules
engines. Such engines already exist as stand-alone products, and several vendors have either
written their own or integrated them into their products as add-ons. I expect the critical fac-
tor surrounding this area to be the ability to define rules that affect and are aware of EJBs.
Another key to success will be the ability to provide a rules interface that business users, not
IT technicians, can understand.

Integration into systems management systems such as Tivoli, Unicenter or OpenView will
also be a key consideration as large IT organizations begin to demand greater control of J2EE
services from network management consoles.

Transaction/commerce engines will also become a key factor. The whole point of EJB is to
do transactions. But, from the EJB perspective, this is a somewhat artificial, programmatic
transaction. From the B2B or B2C standpoint a transaction involves the exchange of cash or
other valuables. Commerce engines already exist, and many of them run on EJB servers. Look
for vendors who have commerce offerings to extend their product, and for vendors who don’t,
to seek partners to provide this necessary functionality. I see 2001 as the year that commer-
cially available negotiation (not auction) engines finally hit their stride.

I could go on, but this list is probably big enough. Every project I see these days asks ques-
tions along these lines. It’s the answers to these questions that will decide who will be king of
J2001.

F R O M T H E E D I T O R

sean@sys-con.com
AUTHOR BIO

Sean Rhody is editor-in-chief of Java Developer's Journal.
He is also a respected industry expert and a consuitant with a leading Internet service company.

Who Will Be King of J2001?

7OCTOBER 2000

Java COM

WRITTEN BY KEITH SCIULLI

T
his year’s battle in the technology field resembles an election year – people are choos-
ing sides and leveraging their power. The big decision for developers will be selecting a
protocol to build into their smart devices. Each camp has its pundits and its naysayers.
Sun and Microsoft are deeply entrenched in the market. Both have too much at risk and
are refusing to concede ground. This stalemate has placed developers right in the mid-
dle of the quandary. What protocol will emerge from this stubborn battle as the de facto
standard? Who will produce the most widely accepted platform? Who has the resources
to bring it to the mass market first and make it stick? What’s tearing at the heart of this
next big tech explosion will likely be the catalyst for the evolution. For now the market
looks like a technology tug-of-war with the developers as the rope.

Consortiums are being established to outline the codes and specifications that will be used.
Many of the larger companies are sharing seats on more than one committee simply to stay
informed, or to sway the momentum of the market. Their persuasion is obviously self-serving;
nonetheless their power is indisputable. Groups like OSGi (Open Service Gateway Initiative)
resemble “arms dealers,” arming their members for a good round of competition on a level play-
ing field.

While maintaining a neutral tone, yet satisfying the individual interests among the members,
Universal Plug and Play groups are establishing a strong user base, and secret society alliances are
popping up everywhere.

Stuck in the middle of the mess are the developers who are feeling the heat from business
developers. These developers see smart devices and the new revenue streams they represent as
the eminent wave of new commerce in the new economy. For now, smart devices have found their
place in industrial automation. Next, we’ll see it in luxury automobiles, at least in those cars that
can absorb the cost and size of the stealthlike boards in their componentry to create an Internet-
on-wheels scenario, and eventually morphing into complete vehicle self-navigation without
human intervention. However, the real market-in-waiting is the residential gateway market of the
post PC–era, when devices will be controlled remotely, proactively and automatically through a
central processing unit located just about anywhere. This is where the market expects to become
a multibillion-dollar cash cow and the future of consumer electronic appliances. “They have said
that it is expected to be the biggest explosion with the longest fuse,” says George Reel, sales direc-
tor for ProSyst. “We’ve been evangelizing and nurturing this market while we feed the high-end
commercial and industrial uses first.”

ProSyst is 100% Java and platform independent. Not entirely agnostic, ProSyst, a two-year-old
company from Germany, maneuvered into embedded to capitalize on the expected turn in the
market. ProSyst feels it has discovered the answer to the dilemma by being the first to introduce a
working Jini into its embedded server, gradually customizing its product to satisfy the market.
Though it’s designed to be OSGi compliant, it also integrates Universal Plug and Play and is plan-
ning on successfully bridging the two protocols like an interpreter for the United Nations. ProSyst
has remained ahead of the curve and successfully managed to predict and incorporate the
changes into its embedded server. ProSyst’s solution is “mBedded server,” a small 60KB footprint
that can sit on practically any JVM and enable it to sing. They’ve introduced WAP, HAVI, HTML and
WML, and with its latest version they’ve teamed up to offer Directory Services. This is in response
to the demand for the encrypted security of proprietary information over the Net and, perhaps
more important, network management of these billion devices as they proliferate into the market.

—continued on page 41

J D J G U E S T E D I T O R I A L

While Giants Lie Sleeping
A technology tug-of-war for smart devices

AUTHOR BIO
Keith Sciulli is the director of marketing and strategic operations at ProSyst. He holds two degrees in technical
communications from Carnegie-Mellon University.

k.sciulli@prosyst.com

Java COM

8 OCTOBER 2000

One of the problems of highly distributed systems is figuring out

how systems discover each other. After all, the whole point of having sys-

tems distributed is to allow flexible and perhaps even dynamic configura-

tions to maximize system performance and availability. How do these dis-

tributed components of one system or multiple systems discover each

other? And once they’re discovered how do we allow enough flexibility, such

as rediscovery, to allow their fail-safe operation?

Space-based programming may provide us with a good answer to these
questions and more. In this article I’ll describe what a space is and how it
can be used to mitigate some of the issues mentioned above. And I’ve
included a technique to convert an ordinary message queue into a space.

What Is a Space?
Conventional distributed tools rely on passing messages between

processes (asynchronous communication) or invoking methods on
remote objects (synchronous communication). A space is an extension of
the asynchronous communication model in which two processes are not
passing messages to one another. In fact, the processes are totally
unaware of each other.

In Figure 1, Process 1 places a message into the space. Process 2,
which has been waiting for this type of message, takes the message out of
the space and processes it. Based on the results, it places another mes-
sage into the space. Process 3, which has been waiting for this type of
message, takes the message out of the space.

Following are highlights of the preceding discussion:
1. The space may contain different types of messages. In fact, I used the

term message for clarity. These messages are actually just “things” (the
message may be an object, an XML document or anything else that the
space allows to be put in it). In Figure 1 the different shapes in the
space illustrate the different types of messages.

2. The three processes involved have no knowledge of one another. All
they know is that they put a message in a space and get a message out
of the space.

3. As in the message-pass-
ing scenario, we aren’t
limited to two processes
communicating asyn-
chronously, but rather
any number of process-
es communicating via a
common space. This
allows the creation of
loosely coupled systems
that can be highly dis-
tributed and extremely
flexible, and can provide
high availability and
dynamic load balanc-
ing.

F O C U S

WRITTEN BY TARAK MODI

FIGURE 1 Multiple processes interacting
with a typical space

Process 3

Process 2

Process 1

Space

1: Process 1
writes to
the space 4: Process 3

takes from
the space

2: Process 2
takes from
the space

3: Process 2
writes to
the space

9OCTOBER 2000

Java COM

Let’s look at a more specific example this time. A
common encryption method is the use of “one-way”
functions, which take an input and, like any other
function, generate an output. The distinguishing fea-
ture of such functions is that it’s extremely difficult to
compute the input that was given to the function to get
the output (i.e., to compute the inverse of the function);
hence, the term one-way function. Instead of trying to
figure out the inverse of the function to get the input

required for the given output, an easier way may be to take
all possible inputs and compute the output for each one.

When we get an output that matches the one we have,
we’ve found the right “input.” But this can be extremely

time consuming given the vast number of possible inputs.
Assume that passwords can’t be more than four charac-

ters in length and only alphanumeric ASCII characters are
used. This gives us 14,776,336 possible passwords (624).

Using the brute force technique to break the password,
assume that the main program breaks the input set into 16

pieces and puts each piece – along with the encrypted pass-
word – in the space. The password-breaking programs

watch the space for such pieces and each available program
immediately grabs a piece and starts working. The pro-

grams continue until no more such pieces are available or
until the password has been broken. If the password is bro-

ken, the breaking program puts the solution in the space,
which is picked up by the main program.

The main program then proceeds to pick up the
remaining pieces, since it has already found the solution

it needs. The program never knew how many pass-
word-breaking programs were available, nor did it

know where they were located. The password-break-
ing programs had no knowledge about one another
or about the main program. If there were 16 pass-
word-breaking programs available, and each one was
on a separate machine, we would’ve had 16
machines working on breaking the password simul-
taneously!

No change to any configuration of the system is
required to add new password-breaking programs.
This is why spaces are so good for fault tolerance,
load balancing and scalability.

As you can see, spaces provide an extremely pow-
erful concept/mechanism to decouple cooperating or
dependent systems. The concept of a space isn’t new,
however. Tuple spaces were first described in 1982 in
the context of a programming language called Linda.
Linda consisted of tuples, which were collections of
data grouped together, and the tuple space, which was

the shared blackboard from which applications could place and retrieve tuples. The concept never gained much
popularity outside of academia, however. Today spaces may be an elegant solution to many of the traditional distrib-

uted computing dilemmas. In recognition of this fact, JavaSoft has created its own implementation of the space con-
cept, JavaSpaces, and IBM has created TSpaces, which is much more functional and complex than JavaSpaces.

(We won’t discuss IBM’s TSpaces in this article.)
We’re now in a position to describe some of the key characteristics of a space:

• Spaces provide shared access: A space provides a network-accessible “shared memory” that can
be accessed by many shared remote/local processes concurrently. The space handles all

issues regarding concurrent access, allowing the processes to focus on the task at hand.
At the very least, spaces provide processes with the ability to place and retrieve

“things.” Some spaces also provide the ability to read/peek at things (i.e., to get
the thing without actually removing it from the space, thus allowing other

processes to access it as well).

Any number

of processes can

communicate

via a

common

space

Java COM

10 OCTOBER 2000

• Spaces are persistent: A space provides reliable storage for processes
to place “things.” These “things” may outlive the processes that cre-
ated them. It also allows the dependent/cooperating processes to
work together even when they have nonoverlapping life cycles, and
boosts the fault tolerance and high-availability capability of distrib-
uted systems.

• Spaces are associative. Associative lookup allows processes to “find”
the “things” they’re interested in. As many processes may be
using/sharing the same space, many different “things” may be in
the space. It’s important for processes to be able to get the “things”
they require without having to filter out the “noise” themselves. This
is possible because spaces allow processes to define filters/tem-
plates that instruct/direct the space to “find” the right “things” for
that process.

These are just a few key characteristics of spaces. Many commercial
space implementations, such as the ones from JavaSoft and IBM, have
additional characteristics such as the ability to perform “transacted”
operations on the space.

JavaSoft’s Implementation: JavaSpaces
JavaSpaces technology, a new realization of the tuple spaces concept

described above, is an implementation that’s available free from Java-
Soft. JavaSpaces is built on top of another complex technology, Jini, a
Java-based technology that allows any device to become network aware.
Jini provides a complex yet elegant programming model that realizes the
Jini team’s vision of “network anything, anytime, anywhere.”

The goal of JavaSpaces is to provide what might be thought of as a file
system for objects. Like other JavaSoft APIs, JavaSpaces provides a sim-
ple yet powerful set of features to developers. As I see it, however, Java-
Spaces has four drawbacks:
1. The implementation of JavaSpaces is complex to install.
2. The fact that it builds on top of Jini makes it a little too heavy, espe-

cially if there are no plans to use Jini elsewhere in the project.
3. JavaSpaces relies on Java RMI, the suitability of which for highly scalable

commercial applications is a topic of debate among many software gurus.
4. JavaSpaces works only with serializable Java objects.

Creating Your Own Space Implementation
Even though commercial implementations of spaces are available in

the market, there are several reasons to create your own. If you work in a
start-up company, budget constraints may be a big reason. Also, the
functionality offered by a commercial implementation may be too much
for the job at hand. Not only may this result in a larger learning curve, it
may even slow down your application due to the sheer size of the mem-
ory footprint. Finally, it’s always fun to create your own implementation.

At Online Insight we decided to create our own implementation. The
primary reasons for our decision were our limited set of requirements
and the extremely lightweight implementation we required to achieve
our scalability and performance goals.

Our requirements can be summarized as follows:
1. The space must support shared access.
2. The space must be persistent.
3. The space must provide the ability to specify a filtering template.
4. The space must allow one “thing” to be accessed by only one

process/application at a time (i.e., we don’t support the “read” operation).
5. The space must perform and scale well under load.
6. The space must be accessible to other CORBA objects.
7. The space must not impose a limitation on what you can put in it

(unlike JavaSpaces, for example).
8. The space must not impose size limitations on what you can put in it

(the underlying hardware, however, may impose a limitation).

Note that the first three requirements are, in addition, key character-
istics of a space.

Java Message Service
At the time we were evaluating message queue–type software – specifi-

cally, Java Message Service (JMS) implementations – we realized that we
could build our space facility on top of one of these queues.

JMS is an API for accessing enterprise-messaging systems from Java
programs. It defines a common set of enterprise-messaging concepts
and facilities, and attempts to minimize the set of concepts a Java lan-
guage programmer must learn to use, including enterprise-messaging
products such as IBM MQSeries. JMS also strives to maximize the porta-
bility of messaging applications. It doesn’t, however, address load bal-
ancing/fault tolerance, error notification, administration of the message
queue or security issues. These are all message queue vendor–specific
and outside the domain of the JMS.

By using message queues that expose a JMS interface, we allow our-
selves the flexibility to switch vendors of message queues if we discover
that the selected one doesn’t meet our scalability requirements. This
separation of implementation from interface is an important design
pattern (see the Bridge design pattern in Design Patterns by Gamma et
al., published by Addison-Wesley). Since each JMS implementation has
its own unique way of getting the initial connection factory, we defined
a Java interface with one method, “getConnectionFactory”, which
returns the initial connection factory.

Each space is configured through a properties file. One property in
this file is the fully qualified name of the class that implements this inter-
face. There is one such class for each JMS implementation supported by
the space. For example, we created one class for Sun’s Java Message
Queue and one for Progress Software’s SonicMQ. By doing this, changing
the underlying message queue used by the space is simply a matter of
changing the name of the Java class in the properties file for the space.
Therefore, if one vendor’s message queue doesn’t live up to our expecta-
tions, we can quickly switch to another.

The space implementation itself is a CORBA object that has the fol-
lowing interface:

interface Space
{
void write(in ByteStream blob) raises (SpaceException);

ByteStream take() raises (SpaceException);
void write_filter(in ByteStream blob, in FilterSeq f)

raises (SpaceException);
ByteStream take_filter(in FilterSeq f) raises (SpaceExcep-

tion);
ByteStream take_filter_as_string(in string f)

raises (SpaceException);

void shutdown();
};

The type ByteStream simply evaluates to a stream of bytes. Hence,
anything that can be represented as a stream of bytes, such as a CORBA
object IOR, a serialized Java object or an XML document, can be stored
in the space and retrieved.

Each space instance has three properties: a name, a property that
indicates if this instance of the space is persistent and a property that
indicates if this instance of the space allows filters. The reason there are
properties to turn the persistence and filtering off is purely for perfor-
mance.

Not all spaces in our application domain are required to be persis-
tent, in which case persistence is a performance bottleneck because it
involves writing out to a database or similar storage mechanism. Simi-
larly, if filtering isn’t required, it’s a performance bottleneck. As men-
tioned above, each space is configured through a properties file,which
has the property indicating the space name, the persistence status
(on/off) and the filtering status (on/off) of the space.

An example of the properties file used in configuring the space is
shown below:

Java COM

12 OCTOBER 2000

SpaceName=MySpace
AllowFilter=true
Persistent=true

The factory to use to get the initial Connection Factory
SpaceFactory=SonicMQSpaceFactoryImpl

The “SpaceName” property is the name of the space, “AllowFilter” is
a boolean property where true means the space turns filter support on
and “Persistent” is a boolean property where true means the space turns
persistence on. “SpaceFactory” is set to the fully qualified name of the
class that allows us to get the initial connection factory from the message
queue. In the foregoing example, this property is set to a class that works
with SonicMQ implementation.

During start-up each space installs itself in the CORBA Name Service
using its name property as the binding name and in the CORBA Trader
Service with the name, persistence and filter properties. Thus interested
applications/processes can find a space by using a well-known name
from the CORBA Name Service or the space properties from the CORBA
Trader Service. For example, an application that wants filtering but isn’t
interested in persistence can indicate these requirements to the CORBA
Trader Service, which will then provide the application with a list of
CORBA space references that match these requirements. The application
may then choose one from that list based on some further screening.

Our implementation of the space gains all its persistence and filtering
capabilities from the underlying messaging queue provider. Our space is
the only client of the message queue. In our implementation the only
purpose the message queue serves is as a high-quality storage/retrieval
mechanism that also provides filtering capabilities. We aren’t relying on
the queuing facilities per se.

Each method of the CORBA interface is detailed below:
• write: This method is called by an application when it wants to put a

stream of bytes into the space and doesn’t want to attach filtering
properties to the stream.

• write_filter: This method is used by an application when it wants to
put a stream of bytes into the space and wants to attach filtering prop-
erties to the stream. The type FilterSeq evaluates to an array of filters
that are attached to that bytestream. A filter is a name-value pair.
Hence, a FilterSeq is an array of name value pairs.

• take: This method is called by an application when it wants to retrieve
a stream of bytes from the space. No filtering is performed since none
is specified.

• take_filter: This method is called by an application when it wants to
retrieve a stream of bytes from the space. However, in this case a Fil-
terSeq is provided. For a match to occur, the bytestream must have a
subset of the filters provided in the method call, and the value of each
filter attached to the bytestream must match the value for the corre-
sponding filter in the method call.

• take_filter_as_string: This method is called by an application when it
wants to retrieve a stream of bytes from the space. In this case a string
that specifies the exact filter is provided. For a match to occur, the fil-
ter properties attached to the bytestream must satisfy the filter string
provided in the method call. This method is used when the filtering
conditions can’t be specified as a FilterSeq.

• shutdown: This method is called to shut down the space. The shut-
down is clean, which means the registration with the Name Service
and the Trader Service is removed.

The space implements all methods in the interface as synchronized.
Furthermore, the take implementations are nonblocking, that is, if
there’s nothing to take, the method returns with nothing.

Conclusion
Distributed applications can be notoriously difficult to design, build

and debug. The distributed environment introduces many complexities
that aren’t present when writing stand-alone applications. Some of these
challenges are network latency, synchronization and concurrency, and
partial failure.

Space-based programming, although not a silver bullet, is an
excellent concept that can lead to an elegant solution to these prob-
lems. It takes us one step closer to achieving our goals in a distributed
system, namely those of scalability, high availability, loose coupling
and performance. It also helps us face the challenges mentioned
above. Best of all, you don’t have to buy an expensive implementation
to get started with this excellent concept. It’s fairly easy to create a
homegrown implementation that satisfies your requirements...and it’s
fun, too!

Resources
1. Linda Group: www.cs.yale.edu/HTML/YALE/CS/Linda/linda.html
2. JavaSpaces homepage: www.javasoft.com/products/javaspaces/
3. IBM, TSpaces: www.almaden.ibm.com/cs/TSpaces/
4. Carriero, N.J. (1987). “Implementation of Tuple Space Machines,” PhD

thesis, Yale University, Department of Computer Science.
5. Segall, E.J. (1993). “Tuple Space Operations: Multiple-Key Search,

Online Matching and Wait-Free Synchronization,” PhD thesis, Rutgers
University, Department of Computer Science.

6. Gul, A., et al. “ActorSpaces: An Open Distributed Programming Para-
digm,” University of Illinois at Urbana-Champaign, ULIUENG-92-1846.

AUTHOR BIO
Tarak Modi, a certified Java programmer, is a lead systems architect at Online Insight where he’s
responsible for setting, directing and implementing the vision and strategy of the company’s product line
from a technological and architectural perspective.Tarak has worked with Java, C++ and technologies
such as EJB, CORBA and DCOM, and holds a BS in EE, an MS in computer engineering, and an MBA
with a concentration in IS.

tarak.modi@onlineinsight.com

Java COM

14 OCTOBER 2000

alexr@fiorano.com

For example, RT systems ensure that:
• When the high-fluid-level sensor in a

tank is triggered, the pump will receive
a shutdown message within 10 seconds.

• When engine RPM exceeds 6,000, fuel
flow will be lowered within 20 mil-
liseconds.

• 95% of credit card sales approval
requests will receive a response with-
in one minute.

These examples also demonstrate
some of the differences among RT sys-
tems. They can work in time intervals
that are long compared to a machine
cycle. They can be fast (some RT systems
work in microseconds). Or their reliabil-
ity can be measured statistically, rather
than absolutely.

Real-Time CORBA Architecture
RT CORBA doesn’t define a magical

environment that makes a non-RT

CORBA application run with RT pre-
dictability. Instead, predictability is
achieved through control of resources
and load. RT systems must be built on
controllable, predictable hardware run-
ning controllable, predictable RT oper-
ating systems. Network delay, although
frequently not controllable, must at
least be taken into account. Local appli-
cation behavior is carefully controlled
using RT OS capabilities, while distrib-
uted behavior is controlled using RT
CORBA.

Real-Time CORBA is a set of optional
extensions to the standard CORBA ORB.
It supports end-to-end predictability for
distributed applications by:
• Respecting thread priorities between

client and server during CORBA invo-
cations

• Bounding the duration of thread pri-
ority inversions

• Bounding the latencies of operation
invocations

Basic Real-Time Architecture
As Figure 1 shows, RT CORBA

extends the client’s current interface, the
Portable Object Adapter (POA) interface,
and adds interfaces for priority settings,
ThreadPool management, priority map-
ping, communications features and a
scheduling service.

Real-Time Priorities and Threading
When you write an RT application,

you never have enough computing
resource to get everything done right
away so you have to prioritize. You
divide your application’s activities by
priority and, when they run, you assign
each activity a priority based on how
urgent or important it is or how often it
has to be run. High-priority tasks get

first crack at resource – CPU, network,
even database rows. You prioritize CPU
access by allocating threads with
assigned priority values, a function sup-
ported by your RT OS. Then you assign
priorities to these threads based on a
scheduling approach.

RT CORBA runs on many RT OSs. In
each OS priorities are represented by
integers, running from a minimum to a
maximum value. Trouble is, each RT OS
defines its own minimum and maxi-
mum value and, in a distributed system,
you’ll probably have a combination of
RT OSs linked by the network. To enable
interoperable and portable applica-
tions, RT CORBA defines a mapping
from its own priority scheme termed
Real-Time CORBA Priority to the
scheme of the underlying RT OS.

What happens to the priority of a
task that migrates over the wire from
one CPU to another? There are two pri-
ority propagation models in RT CORBA:
1. Client Priority Propagation Model:

The client’s priority is propagated to
the server.

2. Server-Set Priority Model: The server
determines the priority of requests
based on its own prioritization rules.

There are also two basic ways to
manipulate threads in RT CORBA. One set
of interfaces, derived from CORBA::Cur-
rent, affects threads for its object (that’s
what Current refers to, of course). The
other affects ThreadPools. Threads in
pools can be preallocated and partitioned
among your active POAs.

Priority inversion (PI) is the bane of
the RT programmer. Here’s an example:
What if a low-priority task, as part of its
function, locks a database row in prepa-
ration for a read-and-change and then

C O R B A C O R N E R

CORBA for Real-Time Systems

WRITTEN BY
JON SIEGEL

R
eal-Time (RT) systems are, in the temporal sense, pre-
dictable. They’re not necessarily fast, though many are;
they don’t necessarily deal with high throughput, though
many do. Their defining characteristic is their temporal
predictability. They run glamorous, high-risk, high-speed
applications such as fly-by-wire airplane and missile con-

trols, military data collection and display, and manufacturing
process control, but they also run more mundane applications
such as e-commerce transaction systems and materials-han-
dling facilities.

Plus...news from OMG

FIGURE 1 RT CORBA adds many interfaces.

existing CORBA entity

SERVERCLIENT

RT_CORBA::
Priority

ORB

RT_CORBA::
ThreadPool

RT_CORBA::
PriorityMapping

IIOP
(GIOP/TCP) ESIOP

other
protocols

Servant

POA

Scheduling
Service

RT POA

RT_CORBA::
Current

CORBA::
Current

RTORB

Real-Time CORBA entity

stops executing because a high-priority
task takes over the CPU. Suppose, fur-
ther, that the high-priority task needs
the same database row. It can’t proceed
because it can’t get the mutex lock on
the row, but the low-priority task can’t
get the CPU cycles it needs to finish and
unlock because other medium-and
high-priority tasks keep getting the CPU
time.

RT CORBA defines a number of
mechanisms that reduce both the
occurrence and duration of PIs. Priority
inheritance sets the priority of a thread
based in part on the priorities of other
threads (and especially threads doing
work that might interfere). Multibanded
communications also work to prevent
PI, as we’ll see in the next section.

Real-Time Communications
Communications Quality of Service

(QoS) is crucial to end-to-end pre-
dictability, and RT CORBA gives you lots
of ways to control it:
• You can set timeout values for your

remote invocations, using the time-
out definitions in OMG’s recently
adopted asynchronous messaging
service specification. These let you
define timeouts for the invocation,
the response and the round-trip.

• You can use the concept of priority-
banded connections, which are just
what the name says. This helps keep
lower-priority invocations from inter-
fering with higher-priority work.

• You can ask for a nonmultiplexed
connection from a client to a server.
The low-priority connections serving
the riffraff may be totally jammed, but
this connection will always be clear.

• Both client and server can select and
configure the protocols used to com-
municate.

Real-Time CORBA Management
A number of interfaces are used to

set up and manage the features we’ve
just listed. Most are policies derived
from POA::policy, so they’ll look familiar
to CORBA programmers when they use
RT CORBA for the first time. For real-
time behavior on the server side you’ll
have to create a Real-Time POA, that is,
one that uses the RT::POA interface and
bears policies that make it execute in
real-time mode.

The rest of this article focuses on news
from OMG’s RT CORBA workshop.

OMG’s RT CORBA Workshop
OMG held its first RT and Embed-

ded Systems Workshop this past July in
Falls Church, Virginia, sponsored by

Highlander Communications, Objec-
tive Interface Systems (OIS) and Vertel –
three companies that market RT ORBs.
(They’re not the only ones; look for a
longer list of RT ORBs when we discuss
the ORB vendors’ roundtable.) Indicat-
ing a high interest in distributed RT and
embedded systems, the event drew
over 140 attendees. If you missed it,
plan for next year’s, which is already in
the works. In fact, there will be two
events: one for RT and one for embed-
ded systems. You’ll find the workshop’s
URL at the end of this column.

The four-day workshop started with
two days of tutorials: the first on CORBA,
the second on the RT extensions. Each
of the final two days consisted of several
sessions of papers grouped by topic, fol-
lowed by a roundtable. Every session
allowed plenty of time for Q&A. I can’t
possibly summarize all the papers in
this column, so I’ll concentrate on a few
and summarize the roundtable discus-
sions too, since they’re always sponta-
neous and fun. OMG posts the papers
on its public Web site 30 days after each
workshop (see www.omg.org/news/
meetings/realtime/2000/presenta-
tions.htm).

Please don’t view the papers and think
you have the full benefit of the workshop;
most of the benefit (and the fun!) comes
from the interaction between the speak-
ers and the audience, and the opportuni-
ty to network with many of the world’s
experts in distributed RT computing.

Scheduling and Resource
Management

The first session covered scheduling
and resource management. Here’s a def-
inition of scheduling: in a basic RT sys-
tem you set priority levels for each of
your tasks, prioritizing important or
urgent tasks higher than less important
ones. Since a task probably involves
more than one computation step, setting
priorities for every step of every task may
be daunting – kind of like assembler pro-
gramming before higher-level languages
were developed. A scheduling service
(such as the one in the RT CORBA speci-
fication) lets you group multiple steps
into an activity and assign all of the steps
a single priority. Whether you assign pri-
orities to each computational step your-
self or do it via a scheduling service, this
is still static scheduling because each
task’s priority is assigned statically and
can’t change even if runtime conditions
warrant. (If you recall our previous point
about client-propagated and server-
defined priority models, you’ll recognize
that a scheduling service will have to
take the priority propagation model into
account.)

Dynamic scheduling adapts compu-
tational priorities to changing loads,
resource availability and urgency. By
collecting and analyzing data at runtime
and being clever about the way they
assign resources to tasks, dynamically
scheduled systems can optimize re-
source usage and maximize the number
of activities that meet their deadlines. If
the system is sufficiently clever, it might
even be able to deliver predictable per-
formance when our requirements of
strict control over the system aren’t
quite met. Dynamic scheduling is not
straightforward! There’s a lot of current
research in this area, and many ways to
achieve (or, it seems, almost achieve) its
goals.

The first paper, from UCSB, de-
scribed a feedback system that adjust-
ed task priorities based on runtime
data. The second, from BBN, added
QoS detection functionality to objects’
stubs and skeletons, enabling the sys-
tem to adapt dynamically to changing
loads.

Case Studies/Experience Reports
Case studies and experience reports

were spread over several sessions. These
included descriptions of some of the
exciting applications associated with RT
computing. For example, Boeing Air-
craft described the Weapon Systems
Open Architecture (WSOA), a project
that also includes Honeywell Technolo-
gy Center, BBN and Washington Univer-
sity (which contributed the TAO ORB).
Additional technology came from
DARPA and the Air Force Research Lab-
oratory. CORBA portions of WSOA in-
clude a hard RT application in an F-15E1
jet fighter and a soft (that is, statistical)
RT application in a 737 AFL support
plane. A flight demonstration is sched-
uled for next summer.

The Software-Defined Radio Forum
(SDRF), a group of companies, is devel-
oping a standard for a family of two-
way radios that can be reconfigured in
software to work at different frequen-
cies and provide different services.
(Think of a handset that can be a cell
phone, wireless digital pager, Web
browser or two-way radio for military,
aircraft or marine use, depending on
the software you download to run it.)
Presenters from Mitre, Software Tech-
nology, Inc., and Exigent International
presented the group’s work including
contributions from RT CORBA and the
CORBA Component Model (CCM). The
forum also incorporated U.S. military
work on the Joint Tactical Radio System
(JTRS). These embedded systems run
in Real-Time, and thus highlighted
both of the workshop’s main topics.

C O R B A C O R N E R

Java COM

16 OCTOBER 2000

Possibly the most impressive com-
bination of RT CORBA and advanced
CORBA features in a running, commer-
cial, embedded distributed RT system
is the pick-and-place surface mount
technology (SMT) assembly machine
described by Bruce Trask of Contact
Systems. Competing in a rough market,
Contact Systems’ goal is to produce
machines that place electronic compo-
nents onto printed circuit boards faster,
more accurately and less expensively
than their competitors’.

The machine, which fits on a cart,
includes multiple-part feeders on both
ends and an assembly in the center
where the parts are mounted on a board.
Two robot arms alternate between pick-
ing up parts from the feeders and placing
them on the board. While the arm makes
its way from the feeders to the board, an
electronic camera takes a picture of the
three to five components that it has
picked up and adjusts the arm’s move-
ment to place the components in their
exact places on the board. Although the
arm takes 200 ms to move from the feed-
er to the board, it takes only 50 ms to
move from the camera position to the
board, giving the system little time to
recognize the components and calculate
the movement correction.

Their current machine has five Pen-
tium processors, seven special-purpose
processors and 30 microcontrollers, all
networked and controlled by an RT
CORBA system based on the TAO ORB.
The system also uses the new OMG
asynchronous messaging service and a
(as yet nonstandard) pluggable proto-
cols framework and RT event service.

Another paper, hopefully with rami-
fications for the future, covered micro-
CORBA – CORBA for the kind of system-
on-a-chip that can be produced so
cheaply it can be used once and thrown
away (or at least not recovered as might
happen if you’re probing ocean temper-
atures with networks of sensors that are
released to the currents, or battlefields
with networks of sensors that may be
blown up, or body parts with networks
of sensors that are swallowed). Near its
smallest, this kind of system-on-a-chip
may have to function with only 64 bytes
(not a typo!) of RAM, but its size and cor-
respondingly small cost enable a market
with nearly unbelievable numbers of
units: sales estimates range up to 11 bil-
lion units per year. OMG members plan
to standardize a version of CORBA for
these chips; look for an RFP before the
end of 2000.

Panel Discussion Winds Up the Day
A panel discussion with six ORB

implementers concluded the first day.

Each started by introducing his compa-
ny and product:
• Ben Watson, Tri-Pacific Software,

said they have a compliant RT CORBA
1.0 scheduling service that guarantees
all activities will meet their schedules.
It works with embedded non-RT as
well as RT ORBs. They use UML to do
RT modeling. (OMG members are
now working on a specification that
will add RT concepts to UML.)

• Doug Schmidt spoke about his crew
back at UCI, now working on an RT
CCM implementation that will include
dynamic scheduling, RT notification,
fault tolerance and load balancing.
Doug, now working at DARPA, on
leave from UCI, produced the TAO RT
ORB while he was a professor at the
University of Wisconsin.

• Malcolm Spence represented Object
Computing, Inc. (OCI), a company that
sells and supports TAO to customers in
telecommunications, aerospace, de-
fense, finance and health care.

• David Barnett, Highlander Commu-
nications, focused on his company’s
adaptation of Inprise’s VisiBroker ORB
for RT embedded systems. This ORB
supports the minimum CORBA speci-
fication (an official stripped-down
version of CORBA suitable for embed-
ded systems), pluggable protocols
and a logging facility.

• Bill Beckwith, CTO of OIS, makers of
ORBexpress, described his company’s
fast RT ORB (remember, we pointed
out that RT and fast aren’t the same
thing) which provides priority man-
agement, priority inheritance and
replaceable transports, and is suitable
for hard RT and embedded applica-
tions. They foresee use in fiber optic
switches, software-defined radios and
transportation systems including
boats, trains and airplanes.

• Sam Aslam-Mir, Vertel, said that his
company’s primary customer base is
telecommunications, which requires
both long mean-time between failure
and long equipment lifetimes. (A lot
of 30-year-old telecommunications
equipment is still in service, although
the pace of technology is bringing this
down.) Convergence of telecommuni-
cations and computer networking,
and the expanding Internet infra-
structure, is changing the industry.

Questions from the Audience
Panelists then answered questions

from the audience, including these:
• Asked about ORBs that combine

RT and fault tolerance, Beckwith,
Schmidt and Aslam-Mir said their co-
mpanies were all close to providing a
solution.

• What about security in RT CORBA
applications? Bill Beckwith pointed out
that this was a hard problem: RT
requires a security implementation able
to provide encryption, access decisions
and other functions via bounded-time
invocations. Currently, no research
indicates that this is even possible,
although none says it isn’t, either. A
number of panelists said there was
research underway on this topic. Curi-
ously, several of them wouldn’t say
where it was being done, or by whom.

• Communications is a hot topic in dis-
tributed RT, so it was no surprise when
the topic of pluggable protocols came
up. A pluggable protocols module
allows the application programmer to
insert his or her own network software
interface, extending the ORB to com-
municate with a new protocol. Several
panelists, including Schmidt, Aslam-
Mir and Beckwith, said their products
now have this or similar functionality.
Some OMG members are planning an
effort to standardize extensible trans-
port frameworks.

To close out the workshop on the last
day, Brad Balfour of OIS moderated an
end-user panel. The first panel presen-
ter, Craig Rodrigues of BBN, described
the Future Scout Cavalry System, a mili-
tary vehicle program, while Ron Snyder
of General Dynamics Land Systems
(GDLS) presented a series of slides
emblazoned with pictures of the mili-
tary vehicles and hardware that use the
most exciting if not the most peace-lov-
ing RT hardware and software.

• • •
OMG and its member companies hold

around five workshops each year. To see
what’s coming up, go to OMG’s homepage
www.omg.org, mouse over calendar, and
select the top item, meeting schedules.
This workshop will split into two next
year: one on embedded systems in Janu-
ary and a separate one on RT now sched-
uled (albeit not yet predictably!) for May
or June. You can download the RT CORBA
1.1 specification from www.omg.org/
technology/documents/recent/ by click-
ing on CORBA/IIOP and then on Realtime
CORBA in the table that comes up next.
The Fault Tolerance specification also
appears on this table. The RT specifica-
tion will move to www.omg.org/technol-
ogy/documents/formal/ with the CORBA
2.4 release; Fault Tolerance will follow
with the CORBA 3.0 release now sched-
uled for early 2001. To follow the Extensi-
ble Transport Frameworks RFP, click on
www.omg.org/techprocess/meetings/-
schedule/.

C O R B A C O R N E R

siegel@omg.org

Java COM

18 OCTOBER 2000

AUTHOR BIO
Jon Siegel, the Object

Management Group’s
director of technology

transfer, also writes
articles and presents

tutorials and seminars
about CORBA. His new

book, CORBA 3
Fundamentals and Pro-
gramming, has just been
published by John Wiley

and Sons.

But instead of going into nonsense
about some dog that can drive a car
across four states, we’ll take a quick look
at Microsoft’s new programming lan-
guage, C#, some excellent customer ser-
vice and what our Nordic cousins are up
to with their mobiles.

It’s Not Java, Honest!
This past summer, on June 26,

Microsoft announced its new program-
ming language to complement its .NET
platform, called “C#” (pronounced sharp,
as in the musical note). The new lan-
guage promises all the latest features that
a modern-day language should have
without compromising security or func-
tionality. I, like many of you, saw the ini-
tial press regarding its launch, then didn’t
give it much thought. After a couple of
months, though, I thought the time had
come to take a proper look at the lan-
guage and see what the story is. I’m sure
in the future there’ll be many articles that
will take you through wonderful, natty
tables comparing C# with Java – with lots
of ticks and crosses detailing various pros
and cons. So as not to steal the thunder
from that brigade of literature, let me just
go through some of the broader points.

At the time of this writing (Septem-
ber), documentation on C# is thin on
the ground. It took me over 15 minutes
to find information on the main
Microsoft Web site. Searching on “C#” –
as in c sharp – yielded no results. Nor
was it listed on any of their standard
product pages. I was beginning to think
that C# was simply Scotch mist or, as the
Americans would probably say, vapor-
ware. But eventually I stumbled on a
link that took me to some literature I
could refer to. Let me save you some
time and point you in the right direc-
tion: http://msdn.microsoft.com/vstu-
dio/nextgen/technology/csharpinto.asp.

No doubt about it…if you were to
run your eyes quickly over a piece of C#

code you’d think it was Java. The syntax
is very familiar, and I don’t believe this is
by accident. I’m guessing that Mr. Gates
wants us in the Java community to
embrace this new kid on the block with
much love and give it a chance to grow
on us. Mmmmmm, we’ll see.

Looking at it, Microsoft has put some
cool features in there…and some that
really shouldn’t have been included.

using System;
public class ArrayClass {

public static void
PrintArray(string[] w) {

for (int i=0; i < w.Length; i++)
Console.Write(w[i] + " ");

}

public static void Main() {
// Declare and initialize an

array:
string[] WeekDays = new string []

{"Mon","Tue","Wed","Thu","Fri"};

// Pass the array as a parameter:
PrintArray(WeekDays);

}
}

As you can see from the sample C# code,
which prints out the contents of a string
array, there are only subtle differences with
Java. The first one you notice is the word
using as opposed to import. The declaration
of the class is the exact same – no difference
there. However, C# has no notion of
“extends” or “implements.” All classes and
interfaces are extended in the same way:

public class userClassX : baseClassY,
interfaceClassZ{ ... }

Declaring methods takes on the same
guise, so no major problems on that
front. C# introduces a cool feature known
as delegation. This is where you obtain a
pointer to a particular object and can

then call the necessary methods that this
object has access to. This is what poly-
morphism is all about. In Java, however,
you can forward- and backward-cast that
reference to access other methods in the
hierarchy. This isn’t allowed in C#. You’d
have to obtain a new reference to the
object to accomplish it. You can argue
whether this is good or bad, but it’ll allow
designers to maintain much stronger
control over the use of their objects.

I’m confident that Java developers
looking over the rest of the code will be
able to understand it with no problem
whatsoever. Barring a couple of wee
case changes, it reads pretty much like
any other Java program.

Another cool feature, which I find
particularly useful, is variable initializa-
tion. As soon as you declare a variable,
it’s set to a default value. Sadly, Java has
no standard for this one. It depends on
what JVM you run whether or not a value
will be set, so it’s always safer to set it
yourself and not have to rely on a third
party. But with C# it’s built in there from
the start, so no worries.

Now before you throw down your
Java and start running toward C#, it’s not
all a bed of roses. There are some quirks
you need to be made aware of. So stay
put for a moment.

One of Java’s greatest strengths is its
ability to run pretty much anywhere
there’s a virtual machine, and with the
availability of JVMs reaching saturation
point, this is no longer a major issue. C#
doesn’t share the same luxury. Unlike
C++/C, it doesn’t compile to a native
program but instead needs to use
Microsoft’s .NET platform. So right
away you can be pretty sure that getting
your C# to run on a Solaris box isn’t
going to be smooth sailing. It can be
argued that Java suffered from the same
fate when it took its first steps into the
wide world, so we’ll have to wait and see
which vendors implement .NET plat-
forms for their boxes.

WRITTEN BY
ALAN WILLIAMSON

W
hen all’s said and done,August was a pretty uneventful month in the world of
Java. No major acquisitions, CEO resignations or significant announcements. In
the press world this period is often referred to as the “silly season”: basically,
nothing’s happening, so they have to dredge up silly wee filler stories.

Java COM

20 OCTOBER 2000

The Sharp Tongue of Microsoft

Another major stumbling block as far
as I’m concerned is the retention of
direct memory pointers. The days of
accessing direct memory are back again.
Hurrah! I think not. May I introduce a
good friend, Dr. Watson; he’ll be helping
you with your C# development and
deployment! It’s going to be ugly. Con-
sider yourself warned.

I highly recommend that you read
about C# yourself. I personally like the
look of it, but I’m not in the Windows
world where I need to look at it seriously.
However, I do know a lot of you are
under major client pressure to stick with
Mr. Gates, so I guess some manager
somewhere will soon read about and
start dictating that the next project has to
be C# enabled. Before you denounce it,
have a look and make up your own mind.
At least that way, when you have to argue
for Java, you’ll be on far stronger footing.

Service, Please?
Sadly, we’re not known for our cus-

tomer service in this great nation of ours
– the U.K., that is. We continually have to
put up with poor service, rude suppliers
and no sense of urgency. I could write
books on what we have to endure, but I
won’t bore you with such moans. What I’d
like to comment on is the quality of ser-
vice from America. Damn, you’re lucky!

We recently moved our offices into a
nice old building that dates back to the
1800s. It’s an ex-bank building with
loads of character and we love it. But in
this move we had to have a new Class-C
allocated to us, so the pain of the form-
filling at Network Solutions had to
ensue. Well, thanks to the Labor Day
holiday in the U.S., the DNS root servers
weren’t updated when they were meant
to be. So we had to wait an extra day for
the update. I learned this after a pleas-
ant phone conversation with customer
service.

The chap’s name was David, and I
was very impressed by the level of care
devoted to sorting out our problems. He
even asked for our phone number in
case we were cut off. Now that’s service!
It was on speakerphone and Keith, after
overhearing the whole thing, asked:
“Why can’t we have that level of service
in this country?” Very impressive. The
Brits could learn a lot from this cus-
tomer care.

Big Brother Is Watching
I’m sure most of you have caught at

least a glimpse of the great human social
experiment of throwing 10 people into
one house and observing how they get
on. Stick a camera in any university
dorm and you have your Big Brother.

But it would appear that Big Brother is
starting to monitor our movements for
us, via our cellular phones.

Every time we move around with our
mobile phone, some computer some-
where is tracking the location so it can
route calls to and fro. Now, as was recent-
ly announced, a company in Sweden is
selling this as a service. Bikeposition.com
will guide you to your destination, detail-
ing the direction you have to take and all
necessary adjustments. Very cool tech-
nology. Scares me, this sort of thing. For
every positive use a particular technology
can be applied to, there is an equal, if not
more negative, application. For example,
slip a powered-on mobile into someone’s
pocket, and boom, you can monitor every
movement. Too Orwellian for my liking.

On that note, I’m now reaching to turn
off my Nokia as I prepare to head home.
Remember to keep an eye on www.n-
ary.com/industrywatch/ for updates.

See you next month.

AUTHOR BIO
Alan Williamson is CEO of n-ary (consulting) Ltd
(www.n-ary.com), the first pure Java company in the U.K.
A Java solutions company specializing in delivering real-world
applications with real-world Java, Alan is the author of two
Java Servlet books and contributed to the Servlet API.

alan@n-ary.com

Java COM

22 OCTOBER 2000

alexr@fiorano.com

J A V A B A S I C S

The Evolution of Connecting

WRITTEN BY
ROBERT J. BRUNNER

S
o here you are, the eager Java developer, about to embrace JDBC (Java Database Connectivity), the
next item on your Java technology checklist. If you followed my last article (JDJ,Vol. 5, issue 9), you’ve
selected a database system and a JDBC driver to help you master this technology. Now you want to
jump in and start writing code. Perhaps you’ve bought a JDBC book, read your JDBC driver docu-
mentation or collected various JDBC articles from magazines (such as this one). Unfortunately, many

of these resources skim the introductory topics or, worse, offer seemingly conflicting code examples.This
article discusses the details of connecting a Java application to a database using JDBC, including how the
process has changed with the evolution of the Java programming language.

The right application leads to powerful new functionality

Java COM

24 OCTOBER 2000

In theory, the basics of connecting a
running Java application to a database
are quite simple. Fundamentally, an
application developer merely has to code
to the JDBC API (see http://java.sun.com-
/j2se/1.3/docs/api/java/sql/package-
summary.html for specific information
on the J2SE 1.3 JDBC API). This API has
seven classes. Only one, the DriverMan-
ager class, is commonly used by begin-
ners. The bulk of the API is dominated by
interfaces that must be implemented by
the JDBC driver vendors. As previously
discussed, this allows for a wide range in
performance and flexibility due to specif-
ic implementation details. As is often the
case, however, the devil is in the details,
and there are a lot of details whenever
databases are involved.

Before delving into them, however, a
mental picture (see Figure 1 for an actu-
al picture) of the process involved in
connecting to a database can be useful
in understanding why things behave
the way they do. First, while seemingly
obvious, the fundamental point to start
with is that all Java code runs inside a
specific Java Virtual Machine (JVM).

Meanwhile, the database system of
interest has its own interfaces and pro-
tocols, which are generally controlled
by a server or daemon process. In order
for these two server processes to com-
municate, a bridge must be established
and that’s accomplished via the JDBC
driver. In this article we’ll use a fictitious
JDBC driver, aptly from the Acme Cor-
poration, whose fully resolved class
name is com.acme.jdbc.AcmeDriver.
While database servers are in general
explicitly designed to allow interprocess
communication, the JVM, for obvious
security reasons, is not. Therefore, the
driver of another Java application also
runs inside the same JVM as the Java
database application and must provide
this extra functionality.

Finding a Driver
Before it can be used, the JVM must

“know” about the JDBC driver, which
consists of two separate steps: loading
and instantiation. The Java object that
manages all of the JDBC drivers for a
JVM is the DriverManager class. This
single class is responsible for shoulder-
ing the burden of managing the pool of
JDBC drivers that are available within a
given JVM. The loading step can be
done in two different fashions: static or
dynamic loading. The first technique,
which is rarely discussed in the popular
literature, is static loading during the
JVM initialization. This is accomplished
by specifying the fully resolved driver
(or drivers if multiple JDBC drivers are
required) class to the JVM via the
jdbc.drivers property:

java
–Djdbc.drivers=com.acme.jdbc.AcmeDriver
Test.java

One of the benefits of this approach
is that the code doesn’t need to be tied
explicitly to a particular JDBC driver,
allowing for changes in the actual driver
used to be made by the system adminis-
trator (who ostensibly would be starting
the JVM as a server process) without
recompiling (and redistributing class
files). Multiple-driver classes can be
loaded in this fashion by separating
them with colons, which could be
important if the Java applications run-
ning inside the same JVM need to com-
municate to different databases.

The alternative approach is to
dynamically load the JDBC driver within
the actual Java application, which is done
using the Java Reflection mechanism:

Class.forName(com.acme.jdbc.AcmeDriver) ;

This approach allows an application
to dynamically load the requested driver
(which can be specified at runtime). Of
course, this requires that the driver class
is actually in the CLASSPATH of the run-
ning JVM. This last point is one of the
leading stumbling blocks for JDBC
novices, as they will receive a ClassNot-
FoundException if the JVM can’t find the
requested class. If multiple drivers are
loaded, any drivers listed in the jdbc.dri-
vers property are registered first, followed
by any dynamically loaded drivers.

Once a JDBC driver has been loaded
into the JVM, it must be instantiated.
The recommended method of designingFIGURE 1 Outline of the JDBC architecture

DATABASE SYSTEM

SQL
Server

JAVA VIRTUAL MACHINE

Java Application JDBC

Java COM

26 OCTOBER 2000

J A V A B A S I C S
drivers is to force them to be automati-
cally instantiated during the loading
process: that means that an application
developer is able to load and instantiate
the JDBC driver in one line of code. This
is accomplished via a static initializer
that creates a new instance of the driver
class and registers the new driver object
with the JDBC DriverManager object. As
a result, the single line of code above is
translated into the following steps:
1. JVM locates the requested driver class,

which must be in the current CLASS-
PATH.

2. The JVM loads the driver class into
memory.

3. The JVM executes the static initializer
section of the driver class, which will
create a new instance of the driver
class and register this new instance
with the DriverManager class.

This whole process should seem
rather straightforward, so what cause is
there for any concern? As a popular Java
colloquialism states, “Write once, debug
everywhere.” The problem is that your
Java code will need to run in a multitude
of JVM implementations, all of which can
have subtle variations. For example,
some Microsoft virtual machines include
a performance trick that loads Java class-
es differently than many other virtual
machines. Unfortunately, this trick pre-
vents the static initializer section from
being executed until the JVM feels the
class is actually needed. As a result, the
driver is neither instantiated nor regis-
tered with the DriverManager object dur-
ing the reflection process. To circumvent
this “feature,” the developer is required to
perform these steps manually:

Class.forName(com.acme.jdbc.AcmeDriv-
er).newInstance() ;

This is not only a “Microsoft prob-
lem,” as even the Sun JDK 1.1 reference
implementation does not work properly
due to a race condition (see the JDBC
FAQ for more information) that prevent-
ed the static initializer section from
being processed. The workaround for
this bug is for the user to explicitly cre-
ate and register the driver class:

java.sql.DriverManager.registerDriv-
er(new com.acme.jdbc.AcmeDriver()) ;

Fortunately, with the maturation of
both Java and the JDBC driver imple-
mentations, these subtle variations are
becoming less common (particularly if
JDBC is confined to the server). This
implies that the following code snippet
is all that is required to explicitly instan-
tiate and register a JDBC driver:

try {

Class.forName("com.acme.jdbc.Acme-
Driver") ;
}catch(java.lang.ClassNotFoundExcep-
tion e) {

System.err.print("ClassNotFoundEx-
ception: ") ;

System.err.println(e.getMessage())
;
}

Making the Connection
Once the driver class has been ini-

tialized, a Java application can request a
connection from the DriverManager
class. The DriverManager object selects
the appropriate JDBC driver from its
pool of registered drivers based on the
specific JDBC URL passed to the Driver-
Manager getConnection method. The
DriverManager object tests each regis-
tered driver, using the provided URLs in
the order in which they were registered.
The first one that recognizes (i.e., estab-
lishes a connection) the JDBC URL is
used to provide the actual database con-
nection. Interestingly enough, this
process is actually layered on top of the
original antiquated method for estab-
lishing a database connection, which is
occasionally still prominently men-
tioned in the documentation of certain
JDBC drivers.

Driver driver = new com.acme.Jdbc-
Driver() ;
Connection con = driver.connect(url)
;

A JDBC URL follows the standard
URL syntax (i.e., Web addresses), which
includes the database name, the data-
base server and optional additional
parameters such as username and pass-
word. Instead of the more familiar proto-
cols such as HTTP or FTP, the JDBC pro-
tocol is used. This is followed by a sub-
protocol which is designated by the indi-
vidual driver vendors and registered with
Sun to prevent confusing duplications.
The last part of the URL is a subname
that provides a mapping to the actual
database of interest. The subname sec-
tion of a URL can vary significantly from
vendor to vendor; for example, the fol-
lowing are all valid JDBC URLs:

// An ODBC registered data source
String url = "jdbc:odbc:DataSource-
Name" ;

// An Oracle 8i database with thin
client connection
String url = "jdbc:oracle:thin:@serv-
er.acme.com:1521:jdbc" ;

// A Microsoft SQL Server database
String url =
"jdbc:JTurbo://server.acme.com:1433/j
dbc" ;

// A mSQL database
String url = "jdbc:msql://local-
host:1114/jdbc" ;

Once the URL is known, obtaining
the connection object is straightfor-
ward:

try {
Connection con = DriverManager.get-

Connection(url);
// Utilize the connection to make a

query
con.close();

}catch(SQLException e) {
System.err.println("SQLException: "

+ e.getMessage());
}

Of course, the getConnection meth-
od has two additional signatures that
allow the developer to pass additional
information, such as a username and
password, to the database.

The Evolution to Data Sources
While it might seem rather odd at

first glance, the JDBC 2.0 specification
introduced a new technique for estab-
lishing connections to a database, the
DataSource object. In fact, the Driver-
Manager class may be deprecated in
future versions of Java. The main reason
for this abrupt change is the emergence
of server-side Java applications within
the Enterprise framework. While a Dri-
verManager object is limited in the func-
tionality it can provide (i.e., it essentially
serves as a JDBC driver pool), a Data-
Source object can represent an arbitrary
data source, work with JNDI (Java Nam-
ing and Directory Interface), provide
connection pooling (simplifies tracking
license and database cursor limitations)
and provide support for distributed
transactions (which is important for
Enterprise JavaBeans). Each of these new
features provides powerful new func-
tionality that exceeds the scope of this
article.

While the future of Java Database
Connectivity clearly lies with Data-
Source objects, the traditional Driver-
Manager connection techniques will not
disappear. Hopefully this article has
helped to illuminate some of the finer
points involved in connecting your Java
application to a database. Once con-
nected, the rest is SQL.

AUTHOR BIO
Robert Brunner is a

member of the research
staff at the California
Institute of Technology,

where he focuses on very
large (multiterabyte)

databases, particularly on
KDD (Knowledge

Discovery in Databases)
and advanced indexing

techniques. He has used
Java and databases for
more than three years,
and has been the Java
database instructor for
the Java Programming

Certificate at California
State University Pomona

for the past two years. rjbrunner@pacbell.net

Java COM

28 OCTOBER 2000

Server-side Java continues to gain ground as the technology of

choice for powering dynamic Web sites, but the goal of using Java to sepa-

rate presentation from business logic has been a tough one to achieve.

JavaServer Pages 1.1 addresses that goal with the introduction of cus-
tom JSP tag libraries. Java developers can now embed complex logic into
middle-tier objects while exposing only simple, easy-to-use tags to the
presentation layer. This frees Java developers to do what they do best
while enabling presentation developers to focus on building good UIs.

If you’re already using JavaBeans and the bean tags introduced in JSP
1.0, you know that these tags still require tag users to have some basic
understanding of Java. Custom JSP libraries can abstract the implemen-
tation away completely so page designers don’t even know what lan-
guage is used behind the scenes. Even better, unlike bean tags, custom
tags can inspect and modify the content within the tag’s body. For exam-
ple, a custom JSP tag could be used to translate content from HTML to
WML or to apply formatting to some text.

Learn how to

abstract complex

business logic

from UI design

J D J F E A T U R E

WRITTEN BY ADAM CHACE

Getting Started
Custom tags are made up of two components: the Tag Handler class

and an XML file called a Tag Library Descriptor. The Tag Handler class
contains the actual Java code executed during a page request. The Tag
Library Descriptor (.tld file) contains the attributes for all tags in a par-
ticular tag library. The JSP engine uses these attributes to decide how to
handle the tags at runtime.

Tags can come in two basic types: those with a body and those with-
out. For my first tag I’ll build a basic tag that has no body and simply
prints a line of text onto the page. The first step is to create the Tag Han-
dler class. To do this I define a new class that will implement the
javax.servlet.jsp.tagext.Tag interface. To make things easier, you can also
extend a class called TagSupport, which defines default methods for the
Tag interface.

Listing 1 shows that I’ve implemented only one method of Tag,
doStartTag(). This method is called whenever the JSP engine encounters
an occurrence of my custom tag. The first thing I did in this method was
to get an instance of JspWriter, which is a specialized version of
java.io.Writer that can be used to write content to the page. The Jsp-
Writer is retrieved from pageContext, which is an instance of the Page-
Context class. PageContext is an abstract class implemented by the JSP
engine vendor and provides access to all the namespaces and attributes
of a particular JSP page. For now, I just need to use it to get the JspWriter
to write out to the page.

You’ll note that doStartTag must return an int value. The JSP engine
uses this return value to determine how to process the remainder of the
page. For tags like SimpleTag that implement the Tag interface, only two
return values are valid:
• SKIP_BODY: Instructs the JSP engine to ignore the body (if one exists)

of this tag and not return it to the client
• EVAL_BODY_INCLUDE: Instructs the JSP engine to evaluate and

include the content of this tag’s body and return it to the client

Since SimpleTag won’t have a body at all, its doStartTag method sim-
ply returns SKIP_BODY. If I wanted to allow users of the tag to place
some content between its start and end tags (and have that content
interpreted and sent to the client), I could return EVAL_BODY_INCLUDE
instead.

That’s it for the TagHandler class. Now I need to write a TLD for this
tag that will provide the JSP engine with the information it needs to use
it. For SimpleTag this file will include the standard heading for a tag
library that looks like this:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"web-jsptaglib_1_1.dtd">

<taglib>
<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>

This header is followed by the declaration of each individual tag.
Here is the definition of our SimpleTag, with an explanation of what each
attribute means:

<tag>
<name>simple</name>

This is the name that the tag will be referred to as in a JSP.

<tagclass>com.jdj.SimpleTag</tagclass>

This is the fully qualified class name of our SimpleTag class.

<bodycontent>empty</bodycontent>

This is where we indicate what type of body the tag will have. A value
of empty means the tag will always appear as <tag/> (without a body). A
value of JSP indicates the body can be interpreted as JSP. A third (and
less used) possibility here is tagdependent, which means the tag will
interpret the body entirely itself.

</tag>

Don’t forget to close the tag library tag with </taglib>. I’ll save the file
as “jdj.tld”.

Using My Tag
I now have a TagHandler class and a tld file and I’m ready to use the

tag. The last step in the process is to write a JSP that will use SimpleTag.
I’ll write the JSP just like any other, with two additions: at the top I need
to provide a Taglib Directive that makes the tag library available within
the page. For my library this looks like:

<%@ taglib uri="jdj.tld" prefix="jdj" %>

The prefix lets me refer to individual tags within a library with the
syntax <prefix:tagname>. The rest of my JSP looks like this:

<html>
<body>

Brought to you by: <jdj:simple/>
</body>

</html>

Now I need to deploy my new JSP file, jdj.tld, and SimpleTag.class to
my Web server. For WebLogic, which I’m using, I’ve JARred all my class-
es and placed that JAR in the class path. I also need to copy the JSP file to
/weblogic/myserver/public_html and the tld file to /weblogic/myserv-
er/public_html/WEB_INF. Consult your JSP engine’s documentation for
details on deployment locations.

Once deployed, I simply navigate to the page with my browser (see
Figure 1).

Enhancing SimpleTag
I’ve discussed the components of a custom JSP tag and the syntax for

its use in a JSP. Now let’s look at some more advanced tags to begin learn-
ing how to build really useful libraries.

Java COM

30 OCTOBER 2000

FIGURE 1 SimpleTag in action

Java COM

32 OCTOBER 2000

SimpleTag didn’t use a body, but suppose I wanted to have a tag that
could output some text at the beginning and end of an arbitrary piece of
content. I can easily extend SimpleTag to do this by implementing the
doEndTag() method. This method works just like the doStartTag in that
it obtains a JspWriter and prints content to it, but (as its name implies)
the JSP engine always calls it when it encounters the close tag for a cus-
tom tag. Like doStartTag(), the doEndTag() method must also return an
int. The possible values it can return are:
• SKIP_PAGE: Instructs the JSP engine to ignore anything on the page

that follows this tag
• EVAL_PAGE: Instructs the JSP engine to continue processing the rest

of the page as normal

I’ll modify the SimpleTag to produce some simple font-formatting
tags that we can surround some text with. The doStartTag method will
output font and formatting information and the doEndTag will close our
font tag. Now any text that is embedded in the JSP between <jdj:simple>
and </jdj:simple> will take on those attributes.

Note that I’ve changed doStartTag to return EVAL_BODY_INCLUDE
so the engine will evaluate and return any text between the tags (see List-
ing 2). EVAL_PAGE is returned by doEndTag so the rest of the page after
my close tag is interpreted as well. Since I’m changing the content type
of my body – that is, my body will no longer be empty – I also need to
change the tld file. I do this by changing the value of <bodycontent> in
the tld from “empty” to “JSP”. This tells the JSP engine that my tag may
contain standard JSP that should be treated as such (see Listing 2).

For my last step I just need to modify the JSP to put some text
between the tags (see Figure 2 and Listing 3).

To make tags truly useful, they often need to be flexible enough to
offer settable attributes to the tag user that help modify their behavior.
For instance, with SimpleTag I may want to allow the tag user to decide
what color the font is (see Listing 4). To support an attribute, I need to
modify both my class file and deployment descriptor. First I need to add
a method to the tag class called setXXX (where “XXX” is the attribute
name). In this example the method is called setFontcolor (the first letter
of any attribute is always capitalized when calling a “set” property). This
method will set a private field within the tag that I’ll use within doStart-
Tag to set the color of the font.

The next step is including the attribute in jdj.tld. To do so, I add an
attribute to the end of SimpleTag’s <tag> definition.

<attribute>
<name>fontcolor</name>
<required>false</name>

</attribute>

The “name” of my attribute is the name that users of the tag will refer
to it by. For example, indicating “required,” as you might assume, deter-
mines whether this attribute must be provided by the tag’s user. Now I
simply add the attribute to my tag within the JSP.

<jdj:simple fontcolor="green">It ain’t easy being…</jdj:simple>

An attribute can even be the result of a runtime Java evaluation. To
support this ability, I add the following line within the attribute defini-
tion:

<rtexprvalue>true</rtexprvalue>

A value of true here indicates to the JSP engine that it should evalu-
ate any JSP appearing in the attribute and pass its result to the tag. So I
could pass a value of red to my tag this way:

<jdj:simple name=<%= new String("red").toUppercase() %>/>

Tags That Modify Their Body
So far, my tag has always just ignored its body or included it verbatim.

However, there are times when a tag might want to inspect and/or mod-
ify the contents of its body. For a tag to have this ability it must imple-
ment a different interface than Tag: BodyTag. Like TagSupport, BodyTag
also has a convenience class that defines default methods for the inter-
face called BodyTagSupport. A tag that implements BodyTag can parse
the contents of its tag body and output anything based on that content.
One example might be a tag that does simple conversion from HDML to
WML or formats a block of text into paragraphs. For my example I’ll cre-
ate a simple body-modifying tag that will change any content in its body
to uppercase. To do so I’ll introduce a new method here that’s useful only
on BodyTag classes, called doAfterBody. This method gets called after
doStartTag and before doEndTag, giving the tag author a place to inspect
the tag body and either print it verbatim, ignore it or change it. My
doAfterBody method looks like this:

public int doAfterBody() {
try {

BodyContent body = getBodyContent();
JspWriter writer = body.getEnclosingWriter();
writer.print(body.getString().toUppercase());

} catch (Exception x) {
return(SKIP_BODY);

}

For this tag I don’t need a doStartTag or a doEndTag since I’m only
concerned with changing the tag’s body. You’ll notice that the way to get
the contents of the body is through a method called getBodyContent,
which is defined in BodyTagSupport. From it I can get the actual String
containing the contents of the body by calling getString(). Note also that
while in doAfterBody, the JspWriter must be retrieved by calling getEn-
closingWriter() from the BodyContent class instead of from the page-
Context. The full listing for the class is in Listing 5.

The tld for the UppercaseTag looks like:

<tag>
<name>upper</name>
<tagclass>com.jdj.UpperCaseTag</tagclass>
<bodycontent>JSP</bodycontent>

</tag>

Any content included between the <jdj:upper> and </jdj:upper> tags
will now be forced to uppercase.

Like both doStartTag and doEndTag, doAfterBody must return an int
value. UpperCaseTag returns a value of SKIP_BODY from doAfterBody.
A value of SKIP_BODY causes the engine to continue processing the rest

FIGURE 2 Enhanced SimpleTag

Java COM

34 OCTOBER 2000

of the page and not include the body in its original form. Instead, the
body is skipped and the contents that have been written to the JspWriter
are included instead. The only other possible return value for doAfter-
Body is EVAL_BODY_TAG. A tag can return EVAL_BODY_TAG to cause
the JSP engine to call doAfterBody another time. Use of EVAL_
BODY_TAG is common for tags that perform some looping – where a
looping variable is checked at each call to doAfterBody() and SKIP_
BODY is returned at the end of the loop.

Nested Tags
Another useful feature of JSP tags is the ability to have them work

cooperatively by nesting them. When nested, outer tags can make meth-
ods and variables available to tags that are contained within their body.
For example, I might want to define an outer tag that performs a JDBC
query. I could then make the query’s ResultSet available to inner tags
that output individual column values. In this scenario the outer tag will
have attributes that specify the driver to use, the JDBC connect String,
and the SQL to execute. To make the results of the query available to
inner tags, I need to define a public method that I’ll call getDataValue(),
which takes the column name and returns the String value for the cur-
rent row and the specified column. The full definition of the QueryTag
can be found in Listing 6. Note that with this tag I repeat the body con-
tents by returning EVAL_BODY_TAG until I reach the end of the Result-
Set, where I return SKIP_BODY.

Next I’ll define an inner tag, which I’ll call a DataValueTag. This tag will
have a single attribute to specify which column to write the value of. Since
DataValueTag will be nested within a QueryTag, I need to get the instance
of the parent QueryTag and call getDataValue on it. Inner tags get access
to their enclosing tags by calling findAncestorWithClass and passing it the
inner tag’s current instance (this) and the class type of the outer tag:

QueryTag qt = (QueryTag) findAncestorWithClass(this,
QueryTag.class);

If qt is null, I throw an exception since my DataValueTag must appear
within a QueryTag. If it isn’t null, I do the following:

String val = qt.getDataValue(columnName);
out.print(val);

The code for the DataValueTag and tld for these tags can be found in
Listings 7 and 8, respectively. By combining these two tags with, for
example, an HTML table, I can easily create a JSP page that displays only
the desired columns within each row in a particular SQL query.

JSP Life Cycle
Once you begin building custom tags and the JSP pages they’re con-

tained in, you may find yourself confused (as I was) about what’s actual-
ly getting executed when. Without a clear picture of the life cycle and
execution order of a page, your JSPs can give you unexpected results.
Luckily, there’s a simple flow of events and a couple of ground rules that
can help clear this all up.

The first (and rather intuitive) ground rule is that page elements,
whether lines of Java code or JSP Tags, are evaluated from top to bottom
in the order in which they appear. When JSP code is encountered, it’s
simply executed; when a tag is encountered, its appropriate methods are
called one at a time depending on the tag type. The following is the flow
of methods that are called on a tag when it’s encountered in a page:
1. Two methods, setParent() and setPageContext(), are called on the

TagHandler class. These methods are handled automatically by Body-
TagSupport and TagSupport so you don’t need to implement them
explicitly if your tag extends either one of them.

2. Any set methods for attributes on this tag are called.
3. doStartTag() is called. If you haven’t implemented this method, the

flow continues. Otherwise you must return one of the following:

• SKIP_BODY: Instructs the engine to ignore the body for this tag if one
exists

• EVAL_BODY_TAG: Instructs the engine to evaluate the body and call
the Tag’s doInitBody() method (relevant only for tags that implement
the BodyTag interface; tags that extend from BodyTagSupport imple-
ment this interface)

• EVAL_BODY_INCLUDE: Instructs the engine to evaluate and include
anything in the tag body; engine proceeds to step 7 (relevant only for
tags that implement the BodyTag interface; tags that extend from
BodyTagSupport implement this interface)

4. setBodyContent() is called on the tag. This allows classes that extend
BodyTagSupport to evaluate, manipulate and modify the body of the
tag.

5. doInitBody is called. Any initialization necessary before doAfterBody
is called can be done here (setting up Connections, setting variables in
the pageContext, etc.).

6. doAfterBody is called. A return value of SKIP_BODY here will result in
doEndTag() being called. Returning EVAL_BODY_TAG will produce
another call to doAfterBody.

7. doEndTag() is called. A return value of EVAL_PAGE here will result in
the rest of the JSP page being evaluated by the engine. Returning
SKIP_PAGE will tell the engine to ignore the rest of the page.

It’s sometimes useful to look at the source code for the servlet your
JSP engine produces from a particular JSP to help understand when
things occur in a page.

Sharing Variables
One last topic I’ll cover is variable scope. What if I want to share data

back and forth between tags and the JSP within a page? Can I pass vari-
ables back and forth? Well, I’ve already shown that tag attributes can be
used to pass variables to a tag. But what about the inverse, making vari-
ables available to the JSP scope from within a tag? Can this be done? The
answer, of course, is Yes, but the approach isn’t quite intuitive. At first you
might assume that you could just write a tag whose output is a line of
Java code that defines a variable. Something like:

public class DefinesAVarTag extends BodyTagSupport {

public int doStartTag() {
try {

JspWriter out = pageContext.getOut();
out.println("<% String magazineTitle = \"JDJ\";%>");

} catch (Exception e) {
System.out.println(e);

}
}

}

Then use the tag like this:

<jdj:definesAVar/>
<% if (magazineTitle.equalsIgnoreCase("JDJ")) { %>

I love Java Developers Journal

But try to load this page and you’ll see that there’s a problem. The JSP
returned by DefinesAVarTag isn’t executed – it’s actually just returned to
the client as text. Meanwhile, the “if” statement is executed as standard
JSP, which makes the compiler complain that the variable “magazineTi-
tle” isn’t defined.

This behavior exemplifies one of the ground rules for using custom
tags: a JSP tag can’t return Java code itself. Any output from a custom tag
is sent as is to the client browser instead of being interpreted as Java.
Though this might seem somewhat restrictive, the limitation actually
makes sense from a performance standpoint. It allows a JSP page to be
compiled into a Servlet class once, when first requested. Subsequent

Java COM

36 OCTOBER 2000

requests just run through the now-compiled Servlet class. If tags were
permitted to return JSP themselves, the compiler would have to compile
the page for every single request since the Java code output from a tag
could differ from call to call.

Despite this limitation I can create a tag that defines and exposes
variables as long as I decide the types and number of those variables up
front. Once I’ve settled on what types (the actual Java classes) and how
many variables a particular tag will put into scope, I incorporate that
information into a class that extends the TagExtraInfo class. This class
has only one method, which JSP engine calls to learn about the variables
a particular tag defines. The method, called getVariableInfo, returns an
array of VariableInfo objects that define the name, type and scope of our
variables. Here’s an example:

public class JDJExtraInfo extends TagExtraInfo {
public VariableInfo[] getVariableInfo(TagData data) {

return new VariableInfo[]
{

new VariableInfo("username",
"String",
true,
VariableInfo.NESTED)

};
}}

In this example the JDJExtraInfo class indicates that any tag associat-
ed with it will define one variable of type String called “username”. The
third parameter in the VariableInfo constructor will always be true for
Java, while the fourth indicates what scope the variable should have. The
possible scopes are:
• VariableInfo.NESTED: Means the variable will be in scope for any JSP

found between the open and close tags
• VariableInfo.AT_BEGIN: Means that the variable will be in scope after

the start tag and for the remainder of the page
• VariableInfo.AT_END: Means that the variable won’t be in scope

until after the end tag and will remain in scope through the end of
the page

Once I’ve created a TagExtraInfo class, I need to associate the tag with
it. This is done with a new line in my tld file:

<tag>
<name>membership</name>

<tagclass>com.jdj.MemberShipTag</tagclass>
<teiclass>com.jdj.JDJExtraInfo</teiclass>
</tag>

Next I’ll modify the tag to actually publish this variable. I do it by simply
setting the variable in the pageContext from within any of the methods in my
TagHandler. For example, the doStartTag might include the following line:

pageContext.setAttribute("username", theUser);

where theUser is some String variable retrieved from elsewhere, like the
session or the EJB layer.

Any variable exposed this way must match exactly the name and Java type
of one of the VariableInfo objects in my TagExtraInfo class. Now I can use my
membership tag within a JSP and refer to username like any other variable:

<jdj:membership>

Welcome back <%= username%>

</jdj:membership>

Conclusion
Custom JSP tag libraries are a valuable addition to the J2EE standard

and offer several advantages over previous methods of separating logic
and presentation within Java. By using the tactics introduced in this arti-
cle, developers can begin building rich tag libraries that can abstract
complex business logic from user interface design.

AUTHOR BIO
Adam Chace is a senior Web software engineer at Network World, Inc. (an IDG company), where he
contributes to site architecture and development for Fusion (www.nwfusion.com) a leading site for
networking professionals. He has over two years of experience developing wired and wireless Internet
applications using server-side Java.

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

public class SimpleTag extends TagSupport {

public int doStartTag() {
try {

JspWriter out = pageContext.getOut();
out.println("Java Developers Journal");

} catch (IOException ioe) {
System.out.println("Error writing to out: " + ioe);

}
return(SKIP_BODY);

}
}

public class SimpleTag extends TagSupport {

public int doStartTag() {
try {

JspWriter out = pageContext.getOut();
out.println("");

} catch (IOException ioe) {
System.out.println("Error writing to out: " + ioe);

}
return(EVAL_BODY_INCLUDE);

}

public int doEndTag() {
try {

JspWriter out = pageContext.getOut();
out.println("");

} catch (IOException ioe) {
System.out.println("Error writing to out: " + ioe);

}
return(EVAL_PAGE);

}
}

<%@ taglib uri="jdj.tld" prefix="jdj" %>

<html>
<body>

<jdj:simple>
Custom JSP Tags!

</jdj:simple>
</body>

</html>

private String color;

Listing 4

Listing 3

Listing 2

Listing 1

achace@nww.com

//Set via the tag attribute fontcolor
public void setFontcolor(String value) {

color = value;
}

public int doStartTag() {
try {

JspWriter out = pageContext.getOut();
out.println("");

} catch (IOException ioe) {
System.out.println("Error writing to out: " + ioe);

}
return(EVAL_BODY_INCLUDE);

}

package com.jdj;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

public class UpperCaseTag extends BodyTagSupport {

public int doAfterBody() {
try {

BodyContent body = getBodyContent();
JspWriter out = body.getEnclosingWriter();
out.print(body.getString().toUpperCase());

} catch (IOException ioe) {
System.out.println("Error writing to out: " + ioe);

}
return(SKIP_BODY);

}

}

package com.jdj;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
import java.sql.*;

public class QueryTag extends BodyTagSupport {

private ResultSet rs = null;
private Statement st = null;
private Connection con = null;

//Attributes
private String connectString;
private String driverClass;
private String sql;
private String user;
private String password;

public int doStartTag() {
loadData();
return(EVAL_BODY_TAG);

}

public int doEndTag() {
closeConnections();
return(EVAL_PAGE);

}

private void closeConnections() {
try { rs.close(); } catch (Exception e) {};
try { st.close(); } catch (Exception e) {};
try { con.close(); } catch (Exception e) {};

Listing 6

Listing 5

Java COM

38 OCTOBER 2000

}

private void loadData() {
try {

Class.forName(driverClass);
con = DriverManager.getConnection(connectString, user,

password);
st = con.createStatement();
rs = st.executeQuery(sql);
rs.next();

} catch (Exception e) {
System.out.println("Error loading data: " + e);

}
}

public int doAfterBody() {
try {

BodyContent body = getBodyContent();
JspWriter out = body.getEnclosingWriter();
out.println(body.getString());
//Clear the body (in case we loop again)
body.clearBody();
if (rs.next()) {

//There is another row so evaluate the body again
return(EVAL_BODY_TAG);

} else {
//Last row so don't evaluate the body anymore
return(SKIP_BODY);

}
} catch (Exception e) {

System.out.println("Error in doAfterBody: " + e);
return(SKIP_BODY);

}
}

//This is the method our nested tags will call to get the
//value of a particular column in the current row

public String getDataValue(String columnName) throws
SQLException {

return(rs.getString(columnName));
}

public void setConnectString(String value) {
connectString = value;

}

public void setDriver(String value) {
driverClass = value;

}

public void setQuery(String value) {
sql = value;

}

public void setUser(String value) {
user = value;

}

public void setPass(String value) {
password = value;

}

}

package com.jdj;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.util.*;
import java.io.*;

public class DataValueTag extends TagSupport {

Listing 7

39OCTOBER 2000

Java COM

Java COM

40 OCTOBER 2000

//Attributes
private String columnName = "";

public DataValueTag() {
}

public int doStartTag() {
try {

JspWriter out = pageContext.getOut();
//Now try to get the parent
QueryTag qt = (QueryTag)findAncestorWithClass(this,

QueryTag.class);
if (qt == null) {
out.print("Must be enclosed in a query tag!");

} else {
try {

String val = qt.getDataValue(columnName);
out.print(val);

} catch (Exception e) {
System.out.println(" An error occurred in DataVal-

ueTag " + e);
out.println("An error occurred: " + e);

}
}

} catch (Exception ioe) {
System.out.println("Error in doStarTag" + ioe);

}
return(SKIP_BODY);

}

public void setColname(String value) {
columnName = value;

}
}

<tag>
<name>query</name>
<tagclass>com.jdj.QueryTag</tagclass>
<bodycontent>JSP</bodycontent>
<attribute>

<name>sql</name>
<required>true</required>

</attribute>
<attribute>

<name>driver</name>
<required>false</required>

</attribute>
<attribute>

<name>connectString</name>
<required>false</required>

</attribute>
<attribute>

<name>user</name>
<required>true</required>

</attribute>
<attribute>

<name>pass</name>
<required>true</required>

</attribute>
</tag>

<tag>
<name>data_value</name>
<tagclass>com.jdj.DataValueTag</tagclass>
<bodycontent>EMPTY</bodycontent>
<attribute>

<name>colname</name>
<required>true</required>

</attribute>
</tag>

Listing 8

41OCTOBER 2000

Java COM

So what does ProSyst have at stake in the
battle for protocol dominance? Simply, every-
thing. Like the different parts of the body,
ProSyst’s embedded server acts as the brain
that drives, orchestrates and governs the dif-
ferent parts, allowing them to function in per-
fect synchronicity. The new gateway technolo-
gy, with all the new revenue streams and ser-
vices it represents, is too good and too promis-
ing to adopt a wait-and-see attitude. We
believe the first one to hit the market and do it
right will score, but it’s a big world with lots of
devices and a lot more to come. “There is
room in the market for everyone,” says George
Reel. “I guess the message I’d like to send out
is, Go ahead and start building your gateways.
You don’t have to hedge your bets that they
will be covered.”

Further movement to counterpunch the
polarized protocol dilemma is mounting; it’s
finding a place with developers who need
something now that can be easily imple-
mented at little or no cost. To answer this call
is the protocol Salutation. It’s an open proto-
col with no royalties, and it provides service
discovery and service management. It has
strong support from the IBM and Bluetooth
camps and is making a serious bid to fill the
promises of other protocols that have not yet
delivered the goods. It’s posturing itself to be
the Linux of protocols and is especially fitted
for low-cost device applications. The embed-
ded world is playing with it enough so it’s
quickly becoming one of the sharpest tools in
the shed.

Silently, in backrooms and golf courses,
deals are being penned to bring these capabil-
ities to bear. Service channels are being devel-
oped and smart homes are cropping up every-
where. And, while no one owns a crystal ball,
the writing is on the wall. Historically, it’s dur-
ing times like this, that a smaller, more agile
player seizes the opportunity to capitalize on
market uncertainty and devises a universal
solution that slays the sleeping giants.

If ProSyst feels it has found the answer in
being platform independent, others are still
too politically motivated by the big names to
act. So what’s causing the indecisiveness?
Perhaps they’re still waiting for their other
projects to be completed. Perhaps they don’t
feel the real world needs or is ready to pay for
a computer in the refrigerator, or they’re
afraid of alienating the campus bully. Either
way, it’s safe to say that progress never sleeps
and never retreats. The clash of the titans will
rage on, and there’s no way to address the
unforeseen. It’s just good to know that there
are options and pioneers who believe that it’s
better to work together than defeat one
another.

GUEST EDITORIAL
—continued from page 7

alexr@fiorano.com

One of the more common ways to do
this is to exploit bugs in server processes
that are running as the superuser. Gener-
ally, if no extra code has been put in place
to prevent it, subprocesses spawned by a
process running as root will also be run-
ning as root.

So Why Run Anything As Root?
As a protection against unauthorized

common users hijacking a UNIX machine,
processes that need to bind to low ports
(0-1024) must be run as root. Web servers,
for instance, run on port 80 by default.
Without this protection any old user could
start up a process that listened on port 80.

One of the common ways to avoid
the risk of running as root is to switch to
a different userid after binding to a low
port. Remember, the superuser can do
just about anything, including assuming
the identity of another user. UNIX has a
system call, setuid(), that allows the
userid of a process to be changed to
another one. So, typically, a process
would start as root, bind to the appro-
priate port, and then call setuid()with
the appropriate userid to switch to a less
privileged user. If the process is compro-
mised in this scenario, damage is limit-
ed to those processes and files that the
less privileged user has access to.

What Does Java Know from UID?
Java is platform independent. Java

applications run inside the Java Virtual

Machine. The JVM has no internal repre-
sentation for the platform-specific con-
cept of UID.

The creators of Java understood that
sometimes platform-specific operations
would need to take place. This is where
JNI (Java Native Interface) comes in.

Nuts and Bolts of JNI
I had a situation where we needed

to ensure that the Java process could
run as an unprivileged user but still
bind to a low port – in this case the
standard ftp port (21). Since the plat-
form is UNIX (Linux, in particular), a
BindException would be thrown when
the thread running in the JVM attempts
to create a ServerSocket bound to port
21 if the JVM is running as an unprivi-
leged user.

I was able to use JNI to call the native
setuid() and switch to the unprivileged
user after the ServerSocket had been
created and bound to port 21. Further,
since my development environment is
on Windows NT, and in order to main-
tain the cross-platform capability of
Java, I created native stub code for the
Windows platform as well. Following
are the steps involved.
1. Create Java code with native methods

(see Listing 1).
2. Compile Java code with javac (i.e.,

javac UID.Java).
3. Generate header file with javah (i.e.,

javah-jni micah.util.UID; see Listing 2).
4. Create native C module to implement

the methods declared in the Java code
(see Listings 3, 4).

5. Compile the native code.
6. Create a test Java app (see Listing 5).

Create Java Code with Native
Methods

Referencing native code in Java is
very straightforward (see Listing 1): sim-
ply include the keyword native in the
signature of an empty method declara-
tion terminated with a semicolon:

public static native int setuid(int
uid);

In my example these methods are
static because I don’t need to maintain
an object in order to use these methods.

Notice the lines:

static {
System.loadLibrary("uid");

}

One of the nice things about JNI is
that the actual loading of the native
library is handled in a platform-inde-
pendent way. The name of the library
and its location is what is platform
dependent. In the case of UNIX a file
named libuid.so is expected to be in the
LD_LIBRARY_PATH. In the case of Win-
dows a file named uid.dll is expected to
be in the system path.

This is declared as a static initializer
to ensure that the library is loaded before
methods of the class are referenced.

U N I X O V E R V I E W

Using JNI for Safer Java Servers Under UNIX

WRITTEN BY
MICAH SILVERMAN

Create a test Java application

Java COM

42 OCTOBER 2000

F
or those of you not too familiar with the UNIX way of life,
here’s a brief overview.There are really two categories of
accounts under UNIX: the superuser (named root) and
everything else. Being root on a UNIX machine gives you
the keys to the kingdom.You can remove files created by
any other user, for instance.You can stop running process-
es started by root or any other user. A UNIX system can
be entirely compromised if an unauthorized person or
process gains root access.

Generate Header File with Javah
Java comes with a utility called

javah that is used to generate a .h file
for use with C programs (see Listing 2).
The nice thing when building an app
that uses JNI is that you don’t have to
memorize the JNI calling conventions,
structure names and return types.
javah generates a file that has the func-
tion definitions declared that you’ll
need to implement in your C program.
javah works similarly to Java in terms of
classpath and package arrangement.
Listing 2 was created using the com-
mand:

javah -jni micah.util.UID

Here is an example of one of the
function definitions from the generated
file:

JNIEXPORT jint JNICALL
Java_micah_util_UID_setuid

(JNIEnv *, jclass, jint);

Notice that the calling convention is
directly related to the package arrange-
ment of your Java class. If that changes
for some reason, you’ll need to rerun
javah to get the proper include file.

Create Native C Module to
Implement the Methods Declared

Because I want to maintain my abil-
ity to develop on Windows NT and
deploy on UNIX, I have created two
platform-dependent implementation
files: unix_uid.c and win_uid.c (see
Listings 3 and 4). These files will be

compiled to libuid.so and uid.dll,
respectively.

Let us look at the UNIX code first.
Notice the first two lines of the file:

#include <jni.h>
#include "micah_util_UID.h"

These references are required. The
first file is found in the include directory
of the Java distribution. The second is
the file generated by javah.

There are a number of UID and GID
manipulation system calls on UNIX. An
in-depth discussion of these is outside the
scope of this article. Suffice it to say that
each UNIX call has been represented in
my Java class (see Listing 1). Each of these
calls follows a similar pattern. I set up the
function just as outlined in the generated
.h file (see Listing 2):

JNIEXPORT jint JNICALL
Java_micah_util_UID_setuid (JNIEnv *
jnienv,
jclass j, jint uid)
{

return((jint)setuid((uid_t)uid));
}

The only thing different that I need
to do from an ordinary call to setuid is to
properly cast the parameter ((uid_t)uid)
and the return value ((jint)) based on
the signature generated by javah for the
function.

As far as the Windows code goes, all
of the functions return zero, which is the
return value for a successful completion
of the system call under UNIX.

Compile the Native Code
I used the following command to

compile the code under UNIX (Linux, in
this case):

gcc \
-I/usr/local/java/include \
-I/usr/local/java/include/genunix \
-shared unix_uid.c -o libuid.so

I used the following command to
compile the code under Windows NT:

cl -Ie:\jdk1.1.8\include -
Ie:\jdk1.1.8\include\win32
-LD win_uid.c -Feuid.dll

Create a Test Java App
The test app shown in Listing 5 sim-

ply waits for input from stdin (so we can
see what user the process is running as),
calls UID.setuid(1010) (remember, it’s
static so we don’t need an instantiated
object), prints out a success message
and does another read from stdin (so we
can verify that the user has been
changed). Figure 1 shows this in action.
Notice that after the first time the Java
application is stopped, it is running as
root. After the second time the Java
application is stopped, it is running as
webadm because the native code has
been called.

For more information check out
Sun’s JNI tutorial at http://java.sun.
com/docs/books/tutorial/native1.1/ind
ex.html.

U N I X O V E R V I E W

Java COM

44 OCTOBER 2000

AUTHOR BIO
Micah Silverman took an
interest in UNIX internals
and networking during the

course of his computer
science studies in the late

’80s. He has been
developing Java

applications since its
release. He is a cofounder
of the Applied Technology

Group, an Internet
development and

consulting firm
(www.appliedtechnology

group.cc).

FIGURE 1 testchUID running as root and then as webadm

‘‘

’’

Being root

on a UNIX

machine

gives you the

keys to the

kingdom

micah.silverman@appliedtechnologygroup.cc

Java COM

46 OCTOBER 2000

micah/util/UID.java

package micah.util;

public class UID {

public static final int SUCCESS = 0;
public static final int FAILURE = -1;

public static native int setuid(int uid);
public static native int seteuid(int uid);
public static native int setgid(int gid);
public static native int setegid(int gid);

static {
System.loadLibrary("uid");

}
}

micah/util/micah_util_UID.h

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class micah_util_UID */

#ifndef _Included_micah_util_UID
#define _Included_micah_util_UID
#ifdef __cplusplus
extern "C" {
#endif
/*
* Class: micah_util_UID
* Method: setuid
* Signature: (I)I
*/

JNIEXPORT jint JNICALL Java_micah_util_UID_setuid
(JNIEnv *, jclass, jint);

/*
* Class: micah_util_UID
* Method: seteuid
* Signature: (I)I
*/

JNIEXPORT jint JNICALL Java_micah_util_UID_seteuid
(JNIEnv *, jclass, jint);

/*
* Class: micah_util_UID
* Method: setgid
* Signature: (I)I
*/

JNIEXPORT jint JNICALL Java_micah_util_UID_setgid
(JNIEnv *, jclass, jint);

/*
* Class: micah_util_UID
* Method: setegid
* Signature: (I)I
*/

JNIEXPORT jint JNICALL Java_micah_util_UID_setegid
(JNIEnv *, jclass, jint);

#ifdef __cplusplus
}
#endif
#endif

micah/util/unix_uid.c

#include <jni.h>
#include "micah_util_UID.h"
#include <sys/types.h>
#include <unistd.h>

JNIEXPORT jint JNICALL
Java_micah_util_UID_setuid (JNIEnv * jnienv,
jclass j, jint uid)
{

return((jint)setuid((uid_t)uid));
}

Listing 3

Listing 2

Listing 1

JNIEXPORT jint JNICALL
Java_micah_util_UID_seteuid (JNIEnv * jnienv,
jclass j, jint uid)
{

return((jint)seteuid((uid_t)uid));
}

JNIEXPORT jint JNICALL
Java_micah_util_UID_setgid (JNIEnv * jnienv,
jclass j, jint gid)
{

return((jint)setgid((uid_t)gid));
}

JNIEXPORT jint JNICALL
Java_micah_util_UID_setegid (JNIEnv * jnienv,
jclass j, jint gid)
{

return((jint)setegid((uid_t)gid));
}

micah/util/win_uid.c

#include <jni.h>
#include "micah_util_UID.h"

JNIEXPORT jint JNICALL
Java_micah_util_UID_setuid (JNIEnv * jn, jclass j,
jint uid)
{
return(0);
}

JNIEXPORT jint JNICALL
Java_micah_util_UID_seteuid (JNIEnv * jn, jclass j,
jint uid)
{
return(0);
}

JNIEXPORT jint JNICALL

Java_micah_util_UID_setgid (JNIEnv * jn, jclass j,
jint gid)
{
return(0);
}

JNIEXPORT jint JNICALL
Java_micah_util_UID_setegid (JNIEnv * jn, jclass j,
jint gid)
{
return(0);
}

testchUID.java

import java.io.*;
import micah.util.*;

class testchUID {
public static void main(String[] args) {
try {
System.in.read();

}
catch (IOException ioe) {}
int result=UID.setuid(1010);
if (result == UID.SUCCESS) {

System.out.println("Success!");
}
else if (result == UID.FAILURE) {

System.out.println("Failure!");
}
try {
System.in.read();

}
catch (IOException ioe) {}

}
}

Listing 5

Listing 4

47OCTOBER 2000

Java COM

Java COM

48 OCTOBER 2000

There are many concerns
surrounding the security of Java
applets and applications down-
loaded from the Internet. But
because Java developers placed
a lot of importance on security
from the start, Java is the pre-
ferred technology for use in net-
worked environments. When
Java’s security features are
implemented properly, Java
programs are safe and can be
downloaded to your computer
without any security risk.

There are a number of ways
to implement security in Java.
Security features can be applied
to applets running in browsers
as well as to Java applications.
This article discusses the fea-
tures of the Security Manager
class.

Java Security Manager
The Java Security Manager arbitrates access to many of the operating

system features such as files, network sockets and printers. It provides
fine-grained control over which operations can be performed by code
running within the Java Virtual Machine (JVM). The relationship between
the Security Manager and other components is illustrated in Figure 1.

The application code uses
Java API methods to access the
Security Manager, which in
turn uses an access controller
to implement the security poli-
cies. However, under special
circumstances the Security
Manager can bypass the access
controller to implement secu-
rity policies.

The role of the Security
Manager is to grant access to
each Java class based on the
amount of trust the user has in
that class. The Java program
must get permission from the
Security Manager before it can
connect to a particular ma-
chine on the network or access
the file system. Whenever a
Java program performs a
restricted operation, it checks
with the Security Manager to
determine if that operation can
be performed. If access is
denied, the program throws a

SecurityException. Nothing inherent in the Security Manager requires
security to be enforced as an all-or-nothing proposition for each class.

The Security Manager can be written so that only classes loaded from
the CLASSPATH are prohibited from performing certain operations nor-
mally permitted to classes loaded from the file system. The Security
Manager has powerful features that can enforce a very detailed complex
policy if necessary.

The most significant difference in Java 1.2 is that it’s much easier to
implement fine-grained security policies. The Security Manager in ver-
sions prior to Java 1.2 relied on internal logic to determine what policies
should be in effect. Changing the policy required changing the Security
Manager itself. The Java 1.2 Security Manager uses an access controller
to enforce its protections. A Security Manager isn’t necessary for every
Java application, and applications by default have no Security Manager.
Plenty of Java implementations are available and they don’t have a stan-
dard Security Manager implementation. The methods in the Security

J D J F E A T U R E

SECURITY
J A

V
A

&
WRITTEN BY P.G. RAMACHANDRAN

FIGURE 1 Relationship between the Security Manager and other components

OPERATING SYSTEM

ACCESS CONTROLLER

SECURITY MANAGER
JAVA API

APPLICATION CODE

Java COM

50 OCTOBER 2000

Manager can be broadly classified into the following groups:
• Methods protecting file access: These methods protect the file system

from the user classes.
• Methods protecting network access: These methods check the securi-

ty details about the sockets and other network aspects.
• Methods protecting program threads: These methods protect the

manipulation of threads by other classes.
• Methods protecting the JVM: These methods protect the integrity of

the JVM.
• Methods protecting system resources: These methods protect the sys-

tem resources, such as printers and system properties.
• Methods protecting Java security aspects: These methods protect

security aspects of Java itself.

SecurityManager and Applets
The classes that constitute the applet are generally loaded from the

network and in general are considered untrusted (for the sake of simplici-
ty signed applets are not discussed here). An applet cannot set the Securi-
ty Manager, so it will have to live with the established security policy of the
browser it’s running on. The implementation of browser SecurityManager
prevents applets loaded over the network from reading or writing files
from the client file system. Applets aren’t allowed to get direct access to the
underlying computer. Some other restrictions associated with applets are:
• Applets can only create network connections back to the originating

host of the applet.
• Classes loaded over the network can’t load libraries or consist of native

methods. (This doesn’t say applets can’t call native methods – only that
native methods can’t be part of the classes loaded over the network.)

• Applets can’t fork off new system processes or see system properties
that would expose the username or working directories.

How to Create a Security Manager
The SecurityManager class itself isn’t intended to be used directly in

your Java program (each of the checks defaults to throwing a security
exception), but instead is intended to be inherited and installed as the Sys-
tem Security Manager. The subclassed Security Manager can be used to
implement the desired security policy. The Security Manager is an abstract
class and you need to extend this class to create your own Security Manag-
er. The code for creating your own Security Manager is shown in Listing 1.

The Security Manager class has more than 25 checkXXX() methods,
and these methods can be overridden to grant or deny access to a user. No
methods in the Security Manager class need to be overridden. By default
the Security Manager class throws an exception to all implementations of
checkXXX()method, meaning that access is denied. To grant access to a
certain method you must override it. One thing you should keep in mind
before overriding the methods is that the methods should return if access
is granted; otherwise, the methods should throw a SecurityException.

The checkRead() and checkWrite() methods are being overwritten in the
Security Manager in this program. These methods grant or deny access to a
particular file in the file system. The Security Manager provides three ver-
sions of checkRead() and two versions of checkWrite(). The signature of the
methods that check whether a program is allowed to read the given file is:

public void checkRead(FileDescriptor fd)
public void checkRead (String file)
public void checkRead(String file, Object context)

The signature of the methods that check whether a program is
allowed to write the given file is:

public void checkWrite(FileDescriptor fd)
public void checkWrite(String file)

The methods that are overridden in the program are checkRead(String
s) and checkWrite(String s) methods in the SecurityManager class. All the

checkXXX() methods throw SecurityException. This exception is a sub-
class of RuntimeException so it doesn’t need to be within a try/catch
block. This utilizes the property of the Java language in which exception
handling is free as long as no exceptions are thrown. It’s up to the Java API
to call the checkXXX() methods at the appropriate time so you don’t have
to call the methods explicitly before a file read or write operation.

Next we’ll install the newly created SecurityManager in our JVM. The
code for installing and testing “MySecurityManager.java” can be found
in Listing 2.

The two methods in the System class used to work with the Security
Manager are:
1. Public static SecurityManager getSecurityManager(): Returns a refer-

ence to the currently installed Security Manager object (or null if no
Security Manager is in place). This method can be used to test various
security policies.

2. Public static void setSecurityManager(SecurityManager sm): Sets the
Security Manager for the object. It can be called only once and can’t be
removed once the Security Manager is installed. The Security Manager
will be used by other classes that run in that particular virtual machine.

To execute and test the program:
• Create a file called input.txt in the current directory and type some

text in the file.
• Compile “MyTest.java” and “MySecurityManager.java” and run the

program. The contents of the file input.txt will be transferred to the file
output.txt. The output of the program is:

Successfully opened the files for read/write
Successfully performed the read/write operation

• Change the value of the flag passed to the constructor of MySecurity-
Manager in MyTest.java.

• Compile both Java files and run the program. The program throws an
exception, indicating that the security policy we implemented doesn’t
allow the user to read the file in the JVM that we’re running the pro-
gram on. The output of the program if the flag is set to false is:

Exception in thread "main" java.lang.SecurityException: checkRead
at MySecurityManager.checkRead(MySecurityManager.java:14)
at java.io.FileInputStream.<init>(FileInputStream.java:65)
at java.io.FileReader.<init>(FileReader.java:35)
at MyTest.testFunc(MyTest.java, Compiled Code)
at MyTest.main(MyTest.java:20)

Conclusion
The publicity given to the security holes in various widely used soft-

ware applications put increased pressure on developers and companies.
Both are realizing the importance of implementing tight security poli-
cies in their applications. Java security has undergone a lot of changes in
each version of the programming language.

This article provides an overview of the Security Manager class in
Java 1.2. The listings show an implementation of a Security Manager that
grants or denies access to files in the file system. Having a basic under-
standing of the Security Manager will help you create the complex secu-
rity policies required by applications to prevent misuse.

References
Java tutorial: www.javasoft.com
Oaks, S. (1998). Java Security. O’Reilly.

AUTHOR BIO
P.G. Ramachandran is a senior software engineer at Tivoli Systems, Indianapolis, Indiana.

p_g_ramachandran@tivoli.com

Java COM

52 OCTOBER 2000

//CodeMySecurityManager.java
public class MySecurityManager extends SecurityManager
{

private boolean flag;
public MySecurityManager(boolean flag)
{

this.flag = flag;
}

// Override checkRead function
public void checkRead (String s)
{

if(!flag)
{

throw new SecurityException("checkRead");
}

}

// Override checkWrite function
public void checkWrite (String s)
{

if(!flag)
{

throw new SecurityException("checkWrite");
}

}
}

// Code MyTest.java
import java.io.*;

public class MyTest
{

public static void main (String[] args)
{

try
{

MySecurityManager secMgr = new MySecurityManager(true);
// Set the security manager

System.setSecurityManager(secMgr);
}
catch (SecurityException excp)
{

System.out.println("Can't Change the SecurityManager!");
}
// Construct an Object
MyTest test = new MyTest();
test.testFunc();

}

public void testFunc()
{

try
{

BufferedReader is = new BufferedReader(
new FileReader("input.txt"));

DataOutputStream os = new DataOutputStream(
new FileOutputStream("out-

put.txt"));

System.out.println("Successfully opened the files for
read/write ");

String readString;

while ((readString = is.readLine()) != null)
{

os.writeBytes(readString);
os.writeByte('\n');

}
System.out.println("Successfully performed the
read/write operation");
is.close();
os.close();

}
catch (IOException excp)
{

System.err.println("IOException.");
}

}

}

Listing 2

Listing 1

alexr@fiorano.com

J A V A T E C H N I Q U E S

Getting All Your Beans from One Bag

WRITTEN BY
NATHAN CUKA

I
amagine this scenario: you’ve written all the appropriate
interfaces and implementations for an EJB and now it’s time
to use it in client code. First you get a bean reference. Every-
thing is simple enough: use JNDI to get the home interface,
call a create method on it and catch all the possible excep-
tions. Voilà, a usable EJB reference. No big deal. However,

after creating the bean and looking at the number of beans
you want to use, you realize you’ll be doing the same thing
over and over again.You shake your head and say, “There has
to be a better way to create these objects.”

A scenario worth imagining

Java COM

54

Fortunately, there is. Polymorphism
and the reflection API provide a power-
ful and flexible mechanism for obtain-
ing EJB references.

Without using reflection or polymor-
phism, you’d obtain references some-
thing like this:

try {
// Use a helper method to get the

JNDI context to use for lookups...
//
InitialContext context = getJNDI-

Context();

// Then lookup the bean home
interface and create the bean

//
String jndiName =

"com/zefer/util/MyBeanHome";
MyBeanHome myHome = (MyBeanHome)

context.lookup(jdniName);
IMyBean myBean = (myBean)

myHome.create();

} catch (...){
// Catch all the exceptions…

}

Granted, this isn’t the most compli-
cated code in the world, but it can lead
to problems with code management.
What happens when you want refer-
ences for several different beans? If you
use casting, as in the example above,
your code would be different for each
bean since you have to hard-code the
objects you’re casting to. And what does
the code look like if you want to use sev-
eral different create methods? Again,
you’d need separate code segments for

each situation. The upshot is, you’d have
similar-looking code. No matter how
simple the code is, large amounts of
duplicate code can be extremely diffi-
cult to manage.

This particular situation rings a bell
for OO analysts – it’s similar to a special-
ization relationship or creational opera-
tion that’s most likely covered by a
design pattern. Indeed, several design
patterns directly address this situation:
Strategy, Builder and Factory, to name a
few. Some patterns, such as the Builder
pattern, appear to be overkill as the dif-
ferences in code are so slight and the
number of situations so varied that the
application of this pattern implies a
large number of trivial classes. This large
number effectively changes the nature
of the problem to one of object manage-
ment rather than code management, so
it doesn’t really improve the situation.
Other techniques, such as delegation,
provide an easier way to manage the
code. Using delegation, every single pro-
cedure that gets a reference would be
hard-coded in; therefore it’s not very
flexible in its application.

Even a strict application of the Facto-
ry pattern may leave a lot to be desired
in terms of reducing the complexity of
the code and the design. Thus the
straightforward application of classic
designs needs to be rethought in order
to streamline the design and code for
obtaining EJB references.

Luckily, the power of polymorphism
and the Java reflection API come to the
rescue. The latter provides the ability to
invoke arbitrary method calls on arbi-
trary objects (as long as that method

exists for that object, of course!). In our
situation we want to invoke arbitrary
create methods for enterprise beans.
The concept of polymorphism comes
into play in the client code after we’ve
created EJB objects and want to cast
them to an appropriate bean type. With
these two items in hand it’s possible to
write a single class with a few methods
that can handle every single creation
scenario for any bean.

For this article I’ve constructed a
class named EJBFactory using Netscape
Application Server 4.0 and its EJB 1.0
implementation. The responsibility of
the EJBFactory class is to return EJBOb-
ject references (see Listing 1). This class
contains three fairly straightforward
methods:
1. setJNDIFinder(): Sets a reference to an

object that provides a wrapper around
JNDI contexts and lookup services

2. getHomeInterface(): Gets a reference
to a particular home interface for a
bean

3. createBean(): Creates an EJBObject
reference

The first two methods are simple,
containing little (if anything) that’s sur-
prising. The third method, createBean(),
does the bulk of the work despite its
deceptively diminutive size.

The createBean() method creates
beans using the same process outlined
above, namely, the method first obtains
the home interface from JNDI, then calls
the appropriate create() method on the
home interface. For this method the first
parameter to the method specifies the
particular home interface to retrieve

OCTOBER 2000

J A V A T E C H N I Q U E S

AUTHOR BIO
Nathan Cuka is a senior

software engineer for
Zefer Corp.

Java COM

56 OCTOBER 2000

from JNDI. The appropriate create
method is defined as the one that match-
es the signature of the objects in the Vec-
tor parameter to the method. To get the
proper create method for the EJB home
interface, the createBean() method first
reflects the Vector parameter to get the
classes of the object it contains, then
reflects the home interface returned from
JNDI to get a reference to the proper cre-
ate method. After getting this reference,
invoking the method to create the bean is
a trivial task.

Using reflection in this manner
allows the createBean() method to create
any type of bean using any type of create
method. After creating the bean, the
method still has to return it. To work with
disparate types of beans, the create-
Bean() method relies on the fact that all
the remote stubs for EJBs inherit from
the EJBObject class. This allows the
client code to use the object normally
after either downcasting the returned
object (for EJB 1.0) or calling the javax.-

rmi.PortableRemoteObject.narrow(...)
method (per section 5.9 of the EJB 1.1
specification) on the object. Thus, by
exploiting polymorphism, the client
code can access the returned bean just
as if it had been created using a more
verbose method.

There are three main objections with
this approach:
1. Reflection may be an expensive oper-

ation, so we have the classic flexibility
versus performance trade-off. This
trade-off is something that may be
answered only on a situational basis.

2. The createBean() method throws a
number of exceptions, thereby beg-
ging the question of whether this
method of creating beans reduces
duplicate code. However, the creation
of a small wrapper class to handle
these exceptions and throw applica-
tion-defined exceptions solves this
problem (see Listing 2).

3. Creating beans in this manner doesn’t
handle inheritance in the bean-create

calls. In other words, if you try to use a
create method that has a parent class
as its signature, with a child class as
the actual parameter, the bean won’t
be created appropriately. Unfortu-
nately, I haven’t found an elegant way
around this final objection as it
appears to be a limitation in the
reflection API.

In spite of these objections, the EJB-
Factory class brings a number of bene-
fits. It greatly reduces code duplication,
making code more compact and easier
to maintain, extend and debug. Creating
beans is extraordinarily easy since the
code consists of a single method call and
an associated catch block (see Listing 3).
Furthermore, the flexibility of the EJB-
Factory allows you to easily extend an
EJB-based system to include new beans
without having to modify any code. Now
that’s a scenario worth imagining!

micah/util/UID.java

import java.util.*;
import java.lang.reflect.*;
import javax.ejb.*;
import javax.naming.*;

/**
* A general purpose EJB factory. If you wanted to
* use the abstract factory design pattern here, you could
* have this class implement a generic interface to provide
* a higher degree of abstraction. That level of abstraction
* was not really needed for this example.
*/

public class EJBFactory {
private JNDIFinder _jndiFinder = null;

/** This constructor sets the JNDIFinder to use. The
JNDIFinder class is

* a wrapper around JNDI functionality such as object
lookups.

*/
public EJBFactory(JNDIFinder finder) {

setJNDIFinder(finder);
}

/** Method to get the home interface for an EJB with
* the specified JNDI name. The method it uses for lookup
* is through a helper JNDIFinder object.
*
* @param jndiName The name of the EJB object to get
* @return An Object that is the home interface
* @throws javax.naming.NameNotFoundException if the
* name does not exists in JNDI. Also throws
* javax.naming.NamingException if there is
* a problem in looking up the name.
*
*/
public Object getHomeInterface(String jndiName) throws

javax.naming.NameNotFoundException,

javax.naming.NamingException
{

Object obj = null;
obj = _jndiFinder.lookup(jndiName);
return obj;

}

/** Method to create an enterprise bean. Right now the
* Vector of params is getting reflected to determine their
* class type.
* This might be an expensive operation and so we might
* want to use something more efficient in the future to
* speed things up. The important thing to remember is
* that ORDER IS IMPORTANT for these parameters. Otherwise
* if you have a create method that takes multiple parame-
* ters of the same type, then you will get the method
* invocation wrong.
*
* @param jndiName The JNDI name of the EJB
* @param params A vector containing the arguments to
* the create method.
* @return An EJBObject that references the remote inter
* face for the specified EJB runtime instance. It is safe
* to down cast this reference to a specific remote inter
* face type.
* @throws InvocationTargetException or IllegalAccessExcep-
* tion if the method has trouble invoking the create
* method. See the java.lang.reflect.Method class for
* details on these exceptions. Also throws javax.naming.*
* exceptions if there is a lookup failure of the home
* interface of the specified EJB. A RemoteException is
* thrown per standard EJB rules. Throw a generic excep-
* tion so that any subclasses (e.g. wrappers) can throw
* their own exceptions.
*/
public EJBObject createBean(String jndiName, Object

[]params)
throws InvocationTargetException,
IllegalAccessException,
NoSuchMethodException,
java.rmi.RemoteException,
javax.naming.NamingException,
javax.naming.NameNotFoundException,

Listing 1

ncuka@acm.org

Java COM

58 OCTOBER 2000

Exception {

EJBObject bean = null;

// Get the home interface and its associated Class
// object. We need the Class object for reflection...
//
Object homeInterface = getHomeInterface(jndiName);
Class beanClass = homeInterface.getClass();

// Need a class array for the method lookup...
//
Class[] signature = getSignature(params);

// Look up the method--throw exception if method not
// there.
// All create methods in the home interface are named
// "create" so search for the create method with the
// appropriate signature
//
Method createMethod = beanClass.getDeclaredMethod("cre-
ate", signature);

// This is the key. Here homeInterface is a reference
// to a REAL remote object -- i.e. the skeleton class
// on the server. The invocation is done on this spe-
// cific instance of the remote object created by the
// EJB container on the server.
//
bean = (EJBObject) createMethod.invoke(homeInterface,

params);

return bean;
}

/** Method to construct an array of Class objects repre-
* senting a method signature
*
* @param parameters A vector whose elements will be
* reflected or their specified Classes.
* @return A Class array
*
*/
private Class[] getSignature(Object [] parameters) {

Class sig[] = new Class[parameters.length];

for(int i =0; i<sig.length; i++) {
sig[i] = parameters[i].getClass();

}
return sig;

}

/** Method to set the internal JDNIFinder variable */
private void setJNDIFinder(JNDIFinder finder) {

jndiFinder = finder;
}

}

package com.myapp.util;

import java.util.*;
import javax.naming.*;

/*
* Class to wrap the EJBFactory to handle the number of excep-
tions
* that the factory throws. By wrapping the factory, it is

Listing 2

Coming in December!

Don’t Miss JDJ’s
LINUX Focus Issue!

www.JavaDeveloper’sJournal.com

For Advertising
Information Contact:

Carmen Gonzalez
Vice President, Advertising Sales

Java Developer’s Journal

201 802-3021
or email

carmen@sys-con.com

easier to use
* its functionality in application code.
*/
public class FactoryWrapper extends EJBFactory {

/* Method to create an enterprise bean. */
public EJBObject createBean(String jndiName, Object []params)

throws AppException
{

EJBObject bean = null;

try {
bean = super.createBean(jndiName, params);

} catch (InvocationTargetException e) {
throw new AppException(e.getMessage());

} catch (NoSuchMethodException e) {
throw new AppException(e.getMessage());

} catch (IllegalAccessException e) {
throw new AppException(e.getMessage());

} catch (javax.naming.NameNotFoundException e) {
throw new AppException(e.getMessage());

} catch (javax.naming.NamingException e) {
throw new AppException(e.getMessage());

} catch (java.rmi.RemoteException e) {
throw new AppException(e.getMessage());

} catch (Exception e) {
throw new AppException(e.getMessage());

}

return bean;
}

}

/* Code example to create a bean using a create method
* that has a signature of create(String). This example
* uses the FactoryWrapper class from Code Example 2.
*
* The JNDIFinder class mentioned is a simple wrapper
* around a JNDI context. The code is not given here
* for the sake of brevity.
*/

...
try {

FactoryWrapper factory = new FactoryWrapper();

// The finder variable is created outside of this scope
//
factory.setJNDIFinder(finder);

String username = "Foo";
String jndiName = "com/foo/entity/myAppBean";
Object [] createArgs = { username };

myAppBean bean = (myAppBean) factory.createBean(jndiName,
createArgs);

bean.doWhatever();

} catch (ApplicationException e) {
// ... Error handling code ...
//
}

...

Listing 3

59OCTOBER 2000

Java COM

On the Web it’s about three things – speed, reliability and

scalability. Does your Web site respond quickly? Does your Web site always

respond quickly? Does your Web site always respond quickly when it’s

being used by tens or hundreds of thousands of users?

Hardware is part of the answer, but software may arguably be more of
the answer. Poor use of limited resources can affect performance as
much, or more, as too little hardware.

Over time your Web system may have become a combination of
everything from static files to database applications, from CGI to servlets,
from C to Perl to Java and on and on and on. At some point it’s good to
step back and examine each of these pieces and the resources they use.

Even if you do, you may only tweak each component independent of
the rest. You may think the CGI and the servlet don’t affect each other, or
the database applications don’t affect (the serving of) the static files, but
they do. Just like any large piece of software, every piece of a Web system
affects every other. It would be good to step back and examine each
piece in regard to the system as a whole. Examining what system
resources each piece is using can prove very beneficial.

Most Web applications depend on a database back end. A database is
a common resource shared by different applications. An examination of
database resource usage should answer a number of questions. How
many connections are needed? How many SQL statements are being
executed? And how many round-trips (from the Web server to the data-
base) are being made? The answer, probably, is too many.

J D J F E A T U R E

WRITTEN BY KEITH MAJKUT & VIVEK SHARMA

Java COM

60 OCTOBER 2000

Java COM

62 OCTOBER 2000

Just because a large system can support a huge amount of resource
usage doesn’t mean that having one will improve speed, reliability or
scalability. Quite the opposite could be true – it may be causing undue
bottlenecks. This is exactly what we found while developing large Web
systems for Oracle. A resource bottleneck is one of the main reasons we
implemented a lightweight Web server.

In this article we discuss our implementation of a lightweight server
that pools database resources for disparate pieces of a Web system. We
describe our initial system problems as well as the first and second
(improved) versions of the server. After that we encourage you to exam-
ine your system and its limited resources to see if you need a server like
this to drastically improve performance.

The Initial System
We begin with a brief description of our Web system and some of the

applications that are part of the architecture. As with many Web systems,
ours includes a membership database. After login, members are autho-
rized to access (static) documents in the file system. The Apache Web
server is used to serve static pages, and an Apache module, written in C,
controls access. The Apache authentication module receives the user-
name and password, queries the database and (dis)allows access as nec-
essary. The module makes multiple database queries to extract different
pieces of authorization information from different tables, which causes
multiple round-trips to the database.

We also have a Java servlet (the level servlet) that’s used to set mem-
bership levels. After payment is received (via another system), the servlet
receives the username and updates the database. The servlet executes
only one database update and causes one round-trip.

Finally another Java servlet receives a username and password,
queries the database, sets cookies and (dis)allows access as necessary.
The module makes multiple database queries and causes multiple
round-trips. This servlet performs the same duties as the Apache mod-
ule, but is used for application login, not file (system) protection.

Each of these three components makes one or more connections to
the database. The authentication module is written in C and loaded with
the Apache process. The level and authentication servlets are written in
Java and basically operate stand-alone. The authentication module and
the authentication servlet execute the same SQL statements; the level
servlet executes a different statement. These three components are a tan-
gled web of software, whose pieces only partially overlap (see Figure 1).

The Resulting Problem
The resource problems did not occur all at once, nor were they ini-

tially obvious. This was because each module was written independent-

ly of each other and implemented over a long period of time. As system
usage grew, the fact that each component made an unrestrained number
of database connections and round-trips caused the Web system in gen-
eral to slow down. This is because opening and closing connections is a
relatively expensive process. At peak times the system was being over-
loaded by connections and round-trips.

The first thought was to maintain connection pools in each of the
components. This would definitely save the time that was spent open-
ing connections. However, determining the optimal number of con-
nections for each component was difficult as each component had dif-
ferent usage patterns (peak times). The authorization module is used
constantly (with peaks); the authorization servlet has regular peaks
and valleys; and the level servlet is used sparingly. Maintaining a fixed
number of connections in each component would solve part of the
problem, but not all of it. To illustrate this, let’s say the authorization
servlet needs to maintain 50 connections for peak usage, which occurs
at 6 a.m. Pacific time. And let’s say the authorization module needs 70
at 5 p.m. If each of them maintained their own connection pool, we’d
have to establish 120 (70 + 50) connections throughout the day. How-
ever, realistically, we don’t need that many connections around all the
time (after all, established connections themselves are a drain on the
system). It would be better if we could keep 90 (or some number
greater than 70) open connections to serve peak usage for both the
servlet and the module.

And the Solution
A centralized connection pool was needed. Each component could

then retrieve connections from the pool, execute SQL and return con-
nections to the pool. This immediately suggested an RMI- or CORBA-
based system. The first problem is that Connection objects can’t be
transmitted over an RMI system.

This meant the core logic that performs SQL operations had to be
coupled with the connection pool inside a server. This server can accept
basic information, such as usernames, passwords and some action indi-
cator, and perform tasks for different client applications. This again
seems like a task that can be accomplished by an RMI/CORBA server.
However, we didn’t use RMI or CORBA due to a number of reasons:
1. Distributed systems using RMI/CORBA are beneficial when objects

need to be exchanged between applications. However, in our case sev-
eral components just needed to transfer string data, so the overhead
of RMI/CORBA was not justified.

2. With RMI and CORBA you need to run special compilers to generate
skeleton and stub files, then you must distribute them. This mainte-
nance overhead was not desirable.

3. The final disadvantage, unique to RMI, is that it can only work with
components written in Java. In our Web system that would mean we can
combine only two out of three components. The Apache authorization
module would be excluded and it was the largest resource user.

Although the investigation into RMI and CORBA didn’t provide a
solution, it did help us conceptually. It reintroduced us to one of the
underlying mechanisms – sockets. Both Java and C components can
communicate over sockets.

What we needed now was a lightweight server that could maintain a
database connection pool and efficiently execute SQL statements on behalf
of multiple applications (see Figure 2). The usage of sockets makes it simi-
lar to a Web server because it can reside on any machine in the system.

A Simple (Lightweight) Protocol
To make this work, we needed to define a protocol for communica-

tion between the server and the different applications. The two things
this protocol had to accomplish were:
1. The server should be able to distinguish which client application is

connected to it so it can execute the corresponding method that ser-
vices the request.FIGURE 1 The problem

Level Servlet(Java)

Auth Servlet (Java)

Auth Module ('C')

Java COM

64 OCTOBER 2000

2. The server and the client should be able to exchange multiple pieces
of data during one request.

The first exchange would be from the application to the server. It
would send a string, which would contain a unique value that identi-
fies the client component. Optionally, the application would also send
any data required by the server to process the request. The Authentica-
tion application would send a username/password that it wants vali-
dated and the level servlet would send a username/password/level of a
user for update.

Since multiple pieces of data need to be sent in one string, a prede-
fined separator is required. This separator is a unique string of characters
that doesn’t normally exist in the kind of data exchanged between the
client and the server. So the client-to-server portion of the protocol is:

[clientIdentifier][separator][data1][separator][data2][separa-
tor].........

After receiving the information the server would first identify which
client application is connected to it. This information would be present
in the first data element of the string sent by the client. Based on this,
the server would invoke a method that serves requests for this client
application. This method would process the remaining data and pre-
pare a result string. For instance, the method that handles authentica-
tion requests would parse the input string, retrieve the username/pass-
word, validate it against the database and prepare a result string that
contains a Success or Failure code. The level servlet might pass only a
username/password and a new level. This protocol would be like:

[data1][separator][data2][separator].......

Here’s an example of this communication:

The authentication module would establish a connection with the
server. It would then write the following string on the data stream:

AuthModule[SEP]username1[SEP]password1

Here [SEP] is the separator string we want to use in the communi-
cation. The server would read this string and parse it. The first element
in the string would indicate that the request came from the authoriza-
tion module. From this the server would figure out that there should
be a username and password in the string. It would then validate this
username/password combination and send back a result such as:

username1[SEP]authorized

System Overview
Several pieces are required to build such a system. First we need a

server that can listen on a port for requests from client applications. The
server then needs to spawn a thread that can handle each request. The
thread should be able to read the information sent by the client applica-
tion, parse it and invoke the appropriate method. The method that it
invokes would be specific to the client application.

Also, we need a connection pool that’s maintained by the server. Each
method that serves client applications should be able to request a connec-
tion from this pool. It should also be able to return the connection back to
the pool so other methods could use it. A description of the classes follows.

The Connection Pool
TheConnPool

This is a class for pooling database connections. It contains a vector
that can store instances of the ConnectionObject class shown in Listing
1. ConnectionObject is an abstraction around a JDBC connection. Each
ConnectionObject instance can contain a JDBC Connection object. It
can also contain other connection-related information such as whether
it’s valid and/or open.

TheConnPool class itself is shown in Listing 2. It contains a method,
createConnectionObject(), that creates and returns a ConnectionObject.

The constructor of TheConnPool class creates a number of Connec-
tionObjects and stores them in the vector. This class also contains a vari-
able called totalConnections that keeps count of the number of Connec-
tionObjects created.

TheConnPool contains a getConnection() and a putConnection()
method in it. Whenever a method of the server needs a database con-
nection, it calls the getConnection() method. This method removes the
first object (ConnectionObject) in the vector and returns it. When the
server method no longer needs the connection, it can return the Con-
nectionObject back to the pool using the putConnection() method.

Note that both getConnection() and putConnection() are synchro-
nized methods. This ensures that no two methods of the server can be
putting/getting connections from the pool simultaneously, saving them
from possible memory corruption.

Lightweight (Java) Server
Listing 3 shows the implementation of our lightweight server. Light-

weightServer first creates a TheConnPool object, thereby causing
MAX_CONNECTIONS number of connections to be established with the
database.

It then creates an instance of the ServerSocket class (in java.net) that
listens for client connections on port 10101. (Of course, this can be eas-
ily changed so that all parameters like port, max connections, etc., are
read from a configuration file.)

The ServerSocket class has an accept() method in it. This method
causes the server to wait till a client tries to establish a connection to the
machine/port on which the server is running. Since we want to serve all
client requests, we start “accept()”ing calls inside a while(true) loop.
Also, we don’t want to make clients wait until all previous clients’
requests have been fully serviced. So we create a thread for handling
each client’s request and start it. Once the thread has been started, con-
trol will come back to the accept() method so the server can process
other client requests waiting in the queue. Meanwhile, the thread can
service the client for which it was started.

WorkThread class is the heart of our server – it reads data sent by
the calling application, processes it and returns results. This thread fig-
ures out the client application that called it based on the first element
defined in our protocol. It then calls the appropriate method to handle
that client’s request. TheConnPool object created in LightweightServer
is passed to each thread. Note that the same instance of this class is
being passed to each thread. By doing so we’re ensuring that there’s
synchronization among threads that try to get/put connections in the
pool object.

FIGURE 2 The solution

Level Se
rvlet(J

ava)

Auth S
ervlet (J

ava)

Auth M
odul

e ('C
')

CentralServer

Connection Pool

Java COM

66 OCTOBER 2000

Client Connections
We’ve now seen how to develop a server that can use a common data-

base connection pool for serving requests from one or more client appli-
cations. Next we’ll see how applications written in C (like our authenti-
cation module) and those written in Java (like our level servlet) can
exchange information with this server. Listing 4 shows a Java snippet for
connecting to the server. Listing 5 shows a C program for doing the same.
In both cases we assume the server is running on port 10101 on the
machine “dummy.server.com”.

Optimization
Monitoring the Size of the Pool

We now have an architecture in place that can provide centralized
processing and database resource pooling for multiple applications. The
next step is to optimize the usage of this pool. This can be achieved with
a monitor thread that periodically checks the number of connections in
the pool and compares it with the number actually being used by one of
the server threads. The monitor thread can then add/remove connec-
tions from the pool depending on usage. In times of heavy usage, the
monitor can create new ConnectionObjects and add them to the pool. At
low traffic times it can remove some ConnectionObjects to free up data-
base resources.

Also, we need to maintain the concept of minimum and maximum
connections. When the server starts up it should bring up a few connec-
tions. As usage grows, the number of connections in the pool can
increase. However, we want some restrictions to prevent a process from
hogging the database. This can be done by restricting the number of
connections to a prespecified hard limit.

To do this we need to add a couple of methods to TheConnPool class:
addConnectionObjects() and removeConnectionObjects(). Also, the
constructor of TheConnPool needs to start the monitoring thread. See
Listing 6 for an outline of these changes.

For the sake of illustration let’s assume that the site using this mon-
itor expects traffic that varies from very low, to medium, to very high.
In the first case we’d want no more than five connections. In the sec-
ond we’d like to keep open connections at 10. Third, no matter how
high the traffic goes, we don’t want connections to go beyond 20. So,
we have a SOFT_LIMIT of five, MID_LIMIT of 10 and a HARD_LIMIT
of 20.

The MonitorThread class shown in Listing 7 attempts to optimize the
number of open connections. It wakes up every minute and checks the
total number of connections and compares it with the number of con-
nections being used. If too many are being used, it reduces the number
to MID_LIMIT or SOFT_LIMIT, whichever applies. Similarly, it increases
the connections if it figures that more are required due to high traffic.
Note: You can add a further level of granularity by adding limits between
the SOFT, MID and HARD limits.

Logging Connection Usage Information
The next big question is how to determine good values for

SOFT_LIMIT, MID_LIMIT and HARD_LIMIT. One easy way is by adding
some code to the MonitorThread so it writes to a log file whenever it
increases or decreases connections in the pool. You can put in time
stamps that tell you how often the thread is activated. If the thread is
activated too often, then the selected numbers aren’t good. Another way
is to write a LogThread along the same lines of the MonitorThread. This
thread could also wake up every few minutes and find out the total num-
ber of connections and the connections being used. It could then write
this information along with a time stamp to a log file.

If the log file is written in a Comma Separated Value (CSV) format,
you can use something like Excel to see traffic patterns on your site
graphically. So, if total connections are equal to the connections being
used for most of the day, then you might consider raising your
HARD_LIMIT. On the other hand, if the number of connections being
used never reaches the total connections, then you can reduce the
HARD_LIMIT number and save some database resources.

Other Improvements
Stored Procedures

We save time by preopening connections to the database in
TheConnPool class. Making round-trips to the database is another
expensive operation. If you’re executing a large number of SQL state-
ments, each causing a round-trip to the database, you’ll see perfor-
mance degradation. You should try to reduce these round-trips. One way
is by creating stored procedures. Instead of having a number of JDBC
calls executing one SQL statement at a time in your logic, you could
bunch the statements together and create a stored procedure in the
database.

Different vendors provide different ways to do this. With an Oracle
database you can create a stored procedure using PL/SQL. This way
you’d make just one call to the database over the connection, greatly
improving your overall performance.

Statement Pooling
The ConnectionObject above is a wrapper class that contains a JDBC

Connection object. We’re not storing Connection objects directly in the
vector that’s maintained by TheConnPool because we want to store infor-
mation about the connection, such as whether it should be discarded.
Another piece that can be stored here is a set of precreated Statement
objects. This is beneficial for statements that need to be executed repeat-
edly, since creating a PreparedStatement and keeping it open saves time.

Since we know which statements the server threads can execute, we
can precreate the corresponding Statement objects. This can be done
with minimal changes. The createConnectionObject() method in The-
ConnPool class can be enhanced so that after creating a connection, it
creates a CallableStatement (for stored procedures) or a PreparedState-
ment object, gives it a name and stores it in the stmts hashtable. A
method in the server thread can then retrieve a connection and the actu-
al statement it needs to execute.

In Listing 8 we’ve slightly modified the ConnectionObject class by
adding a hashtable called stmts.

We modify TheConnPool class so it creates the required statements
and stores them in the ConnectionObject. In Listing 9 we’re creating one
CallableStatement and storing it with the name LEVEL_STMT, and cre-
ating a PreparedStatement and assigning AUTH_STMT as its name.
Before we had statement pooling, the method that served authentica-
tion requests would extract a connection out of the ConnectionObject
and create a statement from it. Now it can simply request the required
Statement object and execute it. Listing 10 illustrates how the new
method would look.

Making the Server More Generic (Version 2)
The lightweight server discussed above is fairly generic. You can eas-

ily add new methods to the WorkThread class and make it capable of
handling requests from new applications. However, the drawback is
that for every new application you’d have to recompile (and restart the
server). In addition, the server code would start looking clumsy and
become difficult to maintain as new applications are added to the sys-
tem. To overcome this we decided to decouple the request handling
functionality from the WorkThread class. So, instead of having the func-
tionality inside methods defined in WorkThread, they would be con-
tained in their own classes. By slightly changing our protocol, we can
invoke handlers for any class without ever having to recompile the
lightweight server.

To do this we defined an interface called ServerWorker. This interface
has a method called execute that returns a string. The input parameters
of this method are a ConnectionObject and the string that’s communi-
cated from the client application to the server (containing the username,
password, etc.). The ServerWorker is shown below.

public interface ServerWorker
{

Java COM

68 OCTOBER 2000

public String execute(ConnectionObject connObj, String inp);
}

Every client handler needs to reside in a class that implements this
interface. An example implementation is shown in Listing 11.

To make the server independent of client applications we need to
make two changes:
1. The protocol needs to be changed. Instead of passing a client iden-

tifier to the server exchange as the first element in the client, it
should pass the name of a class that can handle the application’s
requests.

2. After examining the first element in the protocol, the server should
instantiate an object of the class specified in the exchange instead of
calling a method in WorkThread.

As long as this class implements the ServerWorker interface, the serv-
er can invoke its execute method and have it process the client request.
The benefit is that now new applications can be added to the system
without changing the server. The changed portions of the server are
shown in Listing 12.

To use this server, the following string is sent from the client to the
server:

AuthWorker[SEP]username1[SEP]password1

Now look at Listing 12 to see how our server would respond to such a
request. First it’ll parse this string and determine that the class that han-
dles requests for this client is named AuthWorker. It will use the forName
method of class to load the class of this name (AuthWorker). It will then
create an instance of this class using the newInstance() method of Class.
newInstance() returns an object. However, our server deals only with
handler classes that implement the ServerWorker interface. We can cast
the object that results from newInstance() to a ServerWorker object.
Since each class that implements ServerWorker needs to have an exe-
cute() method in it, our server will simply invoke this method and pass it
a ConnectionObject and the string it received as input from the client.
Now the execute() method in the AuthWorker class can parse the input
string, figure out the username/password, use the ConnectionObject to
authorize the user and send results back to the server.

Summary
Speed is a crucial factor in the success of any Web site. One of the

common factors that impedes speed is improper utilization of
resources. And database connections are a scarce and expensive
resource that should be used very carefully. In this article we’ve looked
at a centralized server that can help optimize usage of your database.
This server can maintain a pool of connections that can be shared by
any application.

This concept isn’t limited to database connections; ideally, any resource
that can affect performance should be moved into an architecture like this.
By doing proper logging and monitoring you can figure out an optimal con-
figuration and improve the response time of your applications.

AUTHOR BIOS
Keith Majkut, a software development manager at Oracle Corporation, leads a team responsible for Web
infrastructure projects. He’s been at Oracle for over 10 years and has followed the technology from DOS to
Web and from C to Java.

Vivek Sharma is a software developer at Oracle Corporation. He has over seven years of industry
experience. His areas of experience and interest include Web-based research and development.
He also coauthored the book Developing e-Commerce Sites: An Integrated Approach Addison-Wesley.

kmajkut@us.oracle.com

vivek_sharma_99@yahoo.com

public class ConnectionObject
{

Connection conn;
boolean connectionOk;
ConnectionObject(Connection c)
{

conn = c;
}
public Connection getConnection()
{

return conn;
}

}

public class TheConnPool
{

int totalConnections = 0;
Vector pool;
TheConnPool(int max)
{

pool = new Vector();
for(int i=0; i<max; i++)
{

ConnectionObject connObj = createConnectionObject();
pool.addElement(connObj);

// Add connection to pool
totalConnections++;

}
}
public synchronized Connection getConnection()
{

if(pool.size() == 0) /* No more available
connections in pool */

return null;
ConnectionObject connObj =

(ConnectionObject)pool.elementAt(0);
pool.removeElementAt(0);
return conn;

}
public synchronized void putConnection(

ConnectionObject connObj)
{

pool.addElement(connObj);
}
public ConnectionObject createConnectionObject()
{

Connection c = /* Create a JDBC connection
using the DriverManager
class as you normally do */

return new ConnectionObject(c);
}

}

public class LightweightServer
{

public static void main(String[] args)
{

........
TheConnPool connPool =

new TheConnPool(MAX_CONNECTIONS);
ServerSocket serverSocket =

new ServerSocket(10101);
while(true)
{

Socket clientSocket =
serverSocket.accept();

WorkThread wt =
new WorkThread(clientSocket, connPool);

wt.start();
}

.........
}

}
class WorkThread extends Thread
{

Socket clientSocket = null;
TheConnPool connPool;
WorkThread(Socket cs, TheConnPool cp)

Listing 3

Listing 2

Listing 1

Java COM

72 OCTOBER 2000

{
clientSocket = cs;
connPool = cp;

}
public synchronized void run()
{

// Get connection object from pool
ConnectionObject connObj =

connPool.getConnectionObject();
// Establish input/output streams for
// communication with client
InputStream is = new

BufferedInputStream(
clientSocket.getInputStream());

java.io.PrintStream ps = new
java.io.PrintStream(

clientSocket.getOutputStream());

// Read data sent by client
byte[] buffer = new byte[1024];
is.read(buffer, 0, 1024);
String inputString = new

String(buffer);

...//Parse the input string and examine
//the first element
// According to the protocol this
// element should tell us which
// application has made the request

if(firstElement.equals("AUTH"))
/* Called by the Apache or the Servlet

authentication client */
processedResult =
executeAuthenticate(connObj,input-
String);

else
if(firstElement.equals("LEVEL"))

processedResult =
executeLevelUpdate(connObj,input-
String);
// Called by the level servlet

// More else ifs for handling other client types

connPool.putConnection(conn); // Return connection to pool

// Send result to the client
ps.print(processedResult);

}
private synchronized String executeAuthenticate(

ConnectionObject connObj, String i)
{

// Extract Connection from connObj and create required Statement
Connection conn = connObj.getConnection();

/* Extract username/password
Verify this against database
using username/password and
Connection c Prepare result
string and send it back

*/
}
private synchronized String executeLevelUpdate(

ConnectiononnObj connObj, String i)
{

// Extract Connection from
connObj and create required Statement

Connection conn = connObj.getConnection();
/* Extract username and level

Connect to database and
set new level for this member

Send a Success or Failure code
*/

}
}

String HOST = "dummy.server.com";
int PORT = 10101;
String sep = "[SEP]";

Socket clientSocket = new Socket(HOST, PORT);
os = new PrintWriter(

new OutputStreamWriter(
clientSocket.getOutputStream()));

is = new BufferedReader(
new InputStreamReader(
clientSocket.getInputStream()));

String sendVal = "LEVEL" + sep + username +
sep + level;

os.println(sendVal);
os.flush();
String recVal = is.readLine();
os.close();
is.close();
clientSocket.close();

#include <arpa/inet.h>
#include <sys/socket.h>

main()
{

struct hostent *host;
unsigned long address;
unsigned short port = 10101;
char *hostName = "dummy.server.com";

int sock;

char buffer[60];
int bufferlen;

char reslt[2048];
int RESLT_LEN = 2047;
struct sockaddr_in addr;

/* Lookup the host, create a socket and establish
connection on port 10101 */

host = gethostbyname(hostName);
address = ((struct in_addr *)host->h_addr_list[0])-

>s_addr;
addr.sin_addr.s_addr = address;
addr.sin_port = htons(port);
addr.sin_family = AF_INET;
sock=socket(AF_INET, SOCK_STREAM, 0);
connect(sock, (struct sockaddr *)&addr, sizeof(struct

sockaddr_in));

/* Put data to be sent to server in variable 'buffer'
*/

strcpy(buffer, "AUTH[SEP]username[SEP]password";

/* Write 'buffer' to the output stream */
bufferlen=strlen(buffer);
write(sock, buffer,bufferlen);

/* Read result sent by the server */
read(sock, reslt, RESLT_LEN);

}

TheConnPool(int max)
{

....
MonitorThread mt = new MonitorThread(this);
mt.start();

}
public synchrnonized void addConnectionObjects(int n)
{

for(int i=0; i<n; i++)
{

ConnectionObject connObj = createConnectionObject();
pool.addElement(connObj); // Add connection to pool
totalConnections++;

}
}
public synchronized void removeConnectionObjects(int n)
{

for(int i=0; i<n; i++)
{

ConnectionObject connObj = pool.elementAt(0);
try{

Connection conn = connObj.getConnection();
conn.close();

}catch(Exception ex){}

Listing 6

Listing 5

Listing 4

Java COM

74 OCTOBER 2000

pool.removeElementAt(0);
totalConnections--;

}
}

class MonitorThread extends Thread
{

int SOFT_LIMIT=5;
int MID_LIMIT=10;
int HARD_LIMIT=20;
int SLEEP_TIME = 60000; /* One minute */
TheConnPool tc;
MonitorThread(TheConnPool t)
{

tc = t;
}
public void run()
{

while(true)
{

int connsAvailable = tc.pool.size();
int totalConns = tc.totalConnections;
int connsBeingUsed = totalConns - connsAvailable;
boolean increaseConns = false, reduceConns = false;
int increaseBy = 0, reduceBy = 0;
if(connsBeingUsed < SOFT_LIMIT && totalConns > SOFT_LIMIT)
{

reduceConns = true;
reducyBy = totalConns - SOFT_LIMIT;

}
else
if(connsBeingUsed < MID_LIMIT && totalConns > MID_LIMIT)
{

reduceConns = true;
reducyBy = totalConns - MID_LIMIT;

}
else
if(connsAvailable == 0 && totalConns < MID_LIMIT)
{

increaseConns = true;
increaseBy = MID_LIMIT - totalConns;

}
else
if(connsAvailable == 0 && totalConns < HARD_LIMIT)
{

increaseConns = true;
increaseBy = HARD_LIMIT - totalConns;

}
if(reduceConns)

tc.removeConnectionObjects(reduceBy);
else
if(increaseConns)

tc.increaseConnectionObjects(increaseBy);
try{

sleep(SLEEP_TIME);
}catch(InterruptedException ie){}

}
}

}

public class ConnectionObject
{

Connection conn;
boolean connectionOk;
Hashtable stmts;
public setStatements(Hashtable h)
{

stmts = h;
}
public Statement getStatement(String nm)
{

return (Statement)stmts.get(nm);
}
......

public class TheConnPool
{

public ConnectionObject createConnectionObject()
{

Connection c = /* Create a JDBC

connection using the

DriverManager class as you normally do */
ConnectionObject connObj = new Connec-

tionObject(c);
Hashtable stmts = new Hashtable();

PreparedStatement pstmt =
c.prepareStatement(

"UPDATE member_table " +
" SET level = ?

WHERE username = ?");
stmts.put("LEVEL_STMT", pstmt);
CallableStatement cstmt =

c.prepareCall(
"{call Auth_Api.authenticate(?,?,?,?)}");

cstmt.registerOutParameter(3, Types.VARCHAR);
cstmt.registerOutParameter(4, Types.VARCHAR);

stmts.put("LEVEL_STMT", pstmt);
stmts.put("AUTH_STMT", cstmt);

connObj.setStatements(stmts);
return connObj;

}

private synchronized String executeAuthenticate(
ConnectionObject connObj,

String i)
{

// Extract required Statement connObj
CallableStatement cstmt =
(CallableStatement)connObj.getStatement(
"AUTH_STMT");

// Execute the query using this pre-created statement
}

public class AuthWorker implements ServerWorker
{

public String execute(ConnectionObject connObj, String inp)
{

String result = "";
.... // Parse the username/password
try{

PreparedStatement pstmt =
connObj.getStatement("AUTH_STMT");

.....

}catch(Exception ex){}
return result;

}
}

public synchronized void run()
{

// Get connection object from pool

ConnectionObject connObj =
connPool.getConnectionObject();

....
// First element contains the name of
// the class that can handle the request.

Class c = Class.forName(firstElement);
// Create an instance of this class and invoke the execute method

ServerWorker sw =
(ServerWorker)c.newInstance();

String result = sw.execute(connObj,
inputString);

....

Listing 12

Listing 11

Listing 10

Listing 9

Listing 8

Listing 7

Over the past year all the major database
vendors and many of the classic client/server
tools vendors have turned their attention to
the application server market. The venerable
database and tools vendor, Unify, is no
exception. Unify has released a new version
of its eWave Studio and eWave application
servers into the fray. It considers itself an
endorser of the J2EE platform, but is not yet
an official licensee of the J2EE. I recently
looked at this latest release with an eye on
its Servlets and JSP capabilities.

Unify’s Application Server Products
Unify offers four different products in

their application server family: Unify
eWave Studio, eWave ServletExec, eWave
Commerce and eWave Engine. The
eWave ServletExec product was obtained
by Unify in its acquisition of New Atlanta
Communications LLC in April of this
year. eWave Studio and eWave Servlet-
Exec are designed for creating Servlets
and JavaServer Pages applications. The
eWave Engine and Commerce products
are oriented toward the creation of EJB
applications. Unify offers the eWave
ServletExec as a separate product. In
addition, it’s bundled into the EJB
application server, eWave Engine. Since
the two server engines can be evaluated
separately at this point, you can work
with whichever engine best suits your
purpose. If you’re primarily interested
in building Servlet and JSP applica-
tions, then eWave Studio and eWave
ServletExec are all you need. Converse-
ly, if you’re looking to build EJB-based
applications or applications that com-
bine EJB technology with Servlets and
JSPs, then eWave Engine is probably the
better choice.

Installing and Configuring
eWave Products

Both the eWave Engine and Studio can
be downloaded as two installation kits
with a combined size of over 120MB. This
makes them unwieldy to download with-
out a high-speed Internet connection.

eWave ServletExec comes in two fla-
vors:
1.The “in-process” version works directly

with a variety of popular Web servers
(but not Apache).

2. The “out-of-process” version supports
Apache and provides some additional
flexibility for stopping and starting the
server exclusive of the Web server, and
for plugging in alternative JVMs. (The
ServletExec downloads are just over 2MB
in size and much quicker to download.)

To download a trial version of any Unify prod-
uct you’ll need a license key that unlocks the soft-

ware for the duration of the trial period. Unify sends
the license keys for each product via e-mail. Unify
has packaged a lot of technology into its various
servers, and each one has enough features to be a
complete topic in its own right. I chose to focus my
attention on the eWave Studio and eWave Servlet-
Exec combination for several reasons.

First, while Unify’s eWave engine is posi-
tioned to compete with the larger enterprise
players such as iPlanet, IBM, BEA and Oracle,
Unify has not yet licensed the J2EE. Second,
Servlets and JSPs are hot commodities at the
moment, and customers are more likely to con-
sider Servlet/JSP engines from vendors that have
not yet fully committed to the J2EE. Further-
more, I liked the concept of the eWave Studio
product and was excited about the chance to get
my hands on it. After downloading the two prod-
uct kits, I managed to get them installed after
some initial fumbling. (I started off using the JDK
1.3 release, which caused some problems with
Unify.) eWave Studio installs relatively quickly,
but the ServletExec engine comes equipped with
a lengthy installation and configuration guide.
Integrating the engine with IIS, iPlanet WebServ-
er or Apache is not a simple drag-and-drop
process, but it’s not rocket science either. As
usual, I attempted to get everything installed
without carefully reading through the directions.
After running into the JDK 1.3 problem, I hopped
onto the Unify news server and got all my config-
uration questions answered by scanning
through some existing posts. All in all the instal-
lation went quite smoothly.

eWave Studio
JavaServer Pages are a relatively simple and

elegant solution to building dynamic, data-
based Web applications. This doesn’t necessarily
mean that JSPs are simple to work with, especial-
ly if your application is somewhat complicated.
After all, a hammer is a relatively simple tool, but
it would be overly complex to try and build a
house using just a hammer. I like to think of
eWave Studio as a sort of toolbox for JSPs and
Servlets. There’s a bit of a learning curve, just as
there would be with any sophisticated toolbox.
However, given the fact that eWave Studio is built
on the Servlet/JSP foundation, any investment
you make in learning eWave is also an invest-
ment in the core technology itself. The core
interface of eWave Studio is shown in Figure 1.

To get to the main eWave panel you’ll be
channeled through a wizard interface that sets
up the basics of your site for you. This genera-
tion wizard covers a lot of ground, and I’d
expect novice users to be confused by some of
the parameters. From my experience you can
change most of the settings after you’ve com-
pleted the interface. The best advice I can give
you is to accept the defaults when you first
launch eWave Studio. The upper left-hand cor-
ner of the development interface is a tabbed
panel that allows you to switch among three
separate views. The site panel displays a hierar-
chical layout of the various pages that are avail-

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

jmilbery@kuromaku.com

AUTHOR BIO
Jim Milbery is a software consultant with Kuromaku Partners

LLC (www.kuromaku.com), based in Easton, Pennsylvania.
He has over 16 years of experience in application

development and relational databases.

Unify Corporation
100 Century Center Court
Suite 302
San Jose, CA 95112
Web: www.unify.com
Phone: 408 451-2000
Fax: 408 451-2007
E-mail: info@unify.com

Test Environment
Client/server: Dell 410 Precision, 18MB RAM,
14GB disk drive,Windows NT 4.0 (Service Pack 4)

eWave Studio
and
ServletExec

by Unify

REVIEWED BY JIM MILBERY

Java COM

76 OCTOBER 2000

able within your site. You’re free to manually
create pages, but eWave Studio generates lots
of content for you, and both types of pages
appear within this list. This panel is ideal for
moving around the various parts of your
application.

I generated a number of forms from my
Oracle8i database tables and was then able to
drag and drop the resulting objects into dif-
ferent page flows from the site panel. If you
wish to provide standard formatting for the
various pages in your application, you can
apply templates using the templates
tabbed panel. The display palette just
below the site panel shows all the media
elements that have been defined as part of
your application, including images and
sound files. I could quickly add new direc-
tories of media files to the panel and then
browse through these images in the view-
er as shown in Figure 1. Adding the class
pictures for my familiar NetU database
was easy and painless. I dragged one of
the class pictures onto a page and eWave
Studio successfully copied the graphic to
my site when I published the page later
on.

The large panel in the middle of the
studio interface is the page builder. It’s a
simple process to create Web pages by
dragging and dropping elements onto
the page development area. By default
the component palette has 20 different
elements that can be dropped onto a
page (including common HTML ele-
ments such as tables, text and images).
However, you can also access an exten-
sive element library of code that can be
added to the palette. I was able to locate
an SMTPMailer element and quickly
add it to my sample page. The Studio
interface uses a paneled design, but I
found it easy to hide sections I wasn’t
using and to expand sections as needed.
(This is especially helpful when you’re
designing a JSP page visually.)

Adding Database Access
The real power of Servlets and JSPs is the

ability to interact with data from your
database. This is where the real fun begins
with eWave Studio. Unify provides a
DataForm wizard that walks you through
the process of creating JSP pages that inter-
act with your data. The deployment version
of eWave Studio relies on ODBC and
Microsoft’s Data Objects as the data source
for the wizard, but the deployed version of
the pages uses JDBC. The ServletExec engine
provides familiar scalability features such as
connection pooling, and you’re free to make
use of native JDBC 2.0 drivers as you see fit.
Within the DataForm wizard you can define

connections and create SQL queries – the out-
put is displayed directly in the wizard as shown

in Figure 2.

The DataForm wizard creates multiple pages
from a single database query, including insert,
update, delete, results lists and search panels. You
can select fields on which to link detail pages, and
each of the page types can display different fields
from the query. The pages themselves can be
edited in the layout panel (but the wizard doesn’t
support two-way editing). I was able to create
pages for the UGRADS table (as shown in the lay-
out panel in Figure 2) in no time at all. If you’ve
installed the eWave ServletExec properly, you can
switch from the layout to the preview view and
see the results of your query interactively. This
makes it easy to work with JSP pages without the
overhead of having to completely deploy your
application each time you want to test out a page.

SmartPages and Debugging
Unify provides two additional features

with the eWave product line that impressed
me. eWave’s SmartPages lets you develop JSP
pages that adapt to the browser at runtime.

Unify packages JSP code within the page that
adapts the output to Internet Explorer or
Netscape Navigator. Although I didn’t test this
capability myself, it appears to work as adver-
tised. This is a nice feature if you plan on
deploying your applications to a wide audi-
ence with varying browsers and versions.
Unify also provides a debugger version of the
ServletExec engine, which makes it easier to
solve problems before they’re deployed into
production.

Summary
Unify is a solid company with a good repu-

tation, but it remains to be seen whether or
not they can compete in the larger J2EE arena
with eWave Engine. In the meantime, eWave
Studio and ServletExec provide an excellent
suite of tools for building Servlet and JSP
applications and I’d encourage you to take a
look at these tools for dynamic Web applica-
tion development.

P
R

O
D

U
C

T

R
E

V
I

E
W

Java COM

78 OCTOBER 2000

FIGURE 2 DataForm SQL query

FIGURE 1 eWave Studio

alexr@fiorano.com

J A V A C O M P O N E N T S

A PopupButton Component

WRITTEN BY
PAT PATERNOSTRO P

opup menus, the extremely functional components avail-
able to the Java developer,allow developers to provide menu
capability without the inclusion of a full-blown menu system
(i.e., MenuBar, Menus). From a user interface perspective,
however, they’re not intuitively accessible.The popup menu
is usually triggered by pressing the right mouse button, but
users may not be aware of its availability.

A simple component that provides an intuitive interface to the popup menu’s availability

Java COM

80 OCTOBER 2000

This article details a PopupButton
component that ties the popup menu to
a button component and allows users to
display the menu via a click of the Pop-
upButton.

Class Design
The PopupButton component is

made up of one abstract class, Popup-
Button, located in PopupButton.java
(see Listing 1). This class extends the
java.awt.Button class and implements
the java.awt.event.ActionListener event
listener interface. Since the class is
abstract, the java.awt.event.ActionLis-
tener interface method, actionPer-
formed(), doesn’t need to be imple-
mented; however, any nonabstract (con-
crete) direct descendant class is
required to implement the method
(more on this later).

Two overloaded constructors are
provided for class construction, each
taking a different number of arguments.
The two-argument constructor simply
calls the three-argument constructor via
the this() method, which provides a con-
venient mechanism for one constructor
to call another constructor, allowing you
to localize construction code inside a
single constructor.

The three-argument constructor
requires three parameters:

• A java.lang.String reference that rep-
resents the button’s label

• A java.lang.String array reference
that represents the popup menu item
labels

• A java.awt.Container reference that
represents the popup menu’s container

The constructor first calls a super-
class constructor, passing in the button’s
label concatenated with the “ ” charac-
ter (Alt-0164 on your keyboard). This
arbitrarily chosen character (you can
choose any nonalphanumeric character
you like) acts as a visual clue to the user
that the button will display a popup
menu when pressed. (I decided to use a
character versus a “down arrow” image
file [JPEG or GIF] for the visual clue to
minimize resource requirements. How-
ever, if you wish to use an image file,
you’ll need to add code to read the
image in the constructor and override
the PopupButton component’s paint()
method to draw the image.) Next, a
popup menu is created and its reference
is saved to a private instance variable.
Storage is allocated for an array of
java.awt.MenuItem components whose
array size is based on the size of the
String array constructor parameter. A
for() loop constructs the menu items,
adds an action listener to each menu
item, then adds the menu items to the

popup menu. Finally, the popup menu
is added to the container, and an action
listener is added to the PopupButton
component. This action listener, imple-
mented via an anonymous inner class, is
needed in order to respond to button
clicks for the purpose of displaying the
popup menu. It has no relation to the
menu items’ action listener.

Implementation
To use the class, extend it and provide

a constructor that calls one of the super-
class constructors. Since the abstract
superclass doesn’t provide an implemen-
tation for the java.awt.event.Action-
Listener interface method, actionPer-
formed(), a nonabstract direct descendant
class, is “contractually” obligated to pro-
vide method implementations for any
interfaces the abstract superclass imple-
ments. In the case of the PopupButton
component this is desired, as the response
to popup menu item selections should be
provided in the descendant class.

I’ve provided a sample application
(see Figure 1) that uses the PopupButton
component. The sample application is
made up of three classes located in Pop-
upButtonTest.java (see Listing 2):
• PopupButtonTest
• PopupButtonTestFrame
• MyPopupButton

J A V A C O M P O N E N T S

AUTHOR BIO
Pat Paternostro is an

associate partner with
Tri-Com Consulting Group,

Rocky Hill, Connecticut,
which provides

programming services
for a wide variety of
development tasks.

Java COM

82 OCTOBER 2000

The PopupButtonTest class simply
contains a main() method and instanti-
ates the PopupButtonTestFrame class.
The PopupButtonTestFrame class extends
the java.awt.Frame class and is the con-
tainer for my implementation of the Pop-
upButton class – MyPopupButton.

The MyPopupButton class contains a
three-argument constructor that calls
the superclass three-argument con-
structor and provides an implementa-
tion for the java.awt.event.ActionListen-
er interface method actionPerformed().
If the actionPerformed() method is left
out of the class definition, the compiler
will generate the following error: class
MyPopupButton must be declared
abstract. It doesn’t define void action-
Performed(java.awt.event.ActionEvent)
from class PopupButton. The actionPer-
formed() method retrieves the “action
command” (via the java.awt.event.-
ActionEvent class’s getActionCom-
mand() method) associated with the
component that triggered the event. By
default, the “action command” is the
label of either a java.awt.Button or a
java.awt.MenuItem component. You can
use this label to perform a string com-
parison against the java.awt.MenuItem
labels passed in the constructor to
determine your course of action. For
demonstration purposes I simply dis-
play the label in a console message
when the PopupButton menu item is
selected.

Summary
The PopupButton component is a

simple yet functional component that
provides the user with an intuitive inter-
face to the popup menu’s availability. This
aids greatly in the usability of any applica-
tion that provides popup menus.

ppaternostro@tricomgroup.com

FIGURE 1 Sample PopupButton
component

import java.awt.*;
import java.awt.event.*;

public abstract class PopupButton extends Button implements ActionLis-
tener
{
private PopupMenu popup;

protected PopupButton(String[] items, Container parent)
{
this("",items,parent);

}

protected PopupButton(String label, String[] items, Container parent)
{
super(label + " ");

popup = new PopupMenu();

MenuItem menuItems[] = new MenuItem[items.length];

for(int i = 0; i < items.length; i++)
{
menuItems[i] = new MenuItem(items[i]);
menuItems[i].addActionListener(this);
popup.add(menuItems[i]);

}

parent.add(popup);

addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {

popup.show(PopupButton.this,0,PopupButton.this.getSize().height);}});
}

}

import java.awt.event.*;
import java.awt.*;

public class PopupButtonTest {
public static void main(String args[]) {
new PopupButtonTestFrame();

}
}

class PopupButtonTestFrame extends Frame {
Panel panel = new Panel();
MyPopupButton mpb1 = new MyPopupButton("Colors",new

String[]{"Red","Green","Blue"},this);
MyPopupButton mpb2 = new MyPopupButton("Fruit",new

String[]{"Apples","-","Oranges","-","Bannanas"},this);

PopupButtonTestFrame() {
super();

/* Add the window listener */
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent evt) {
dispose(); System.exit(0);}});

/* Size the frame */
setSize(200,200);

/* Center the frame */
Dimension screenDim = Toolkit.getDefaultToolkit().getScreenSize();
Rectangle frameDim = getBounds();
setLocation((screenDim.width - frameDim.width) / 2,(screenDim.height

- frameDim.height) / 2);

panel.add(mpb1);
panel.add(mpb2);
add(BorderLayout.NORTH,panel);

/* Show the frame */
setVisible(true);

}
}

class MyPopupButton extends PopupButton
{
public MyPopupButton(String label, String[] items, Container parent)
{
super(label,items,parent);

}

public void actionPerformed(ActionEvent evt)
{
String command = evt.getActionCommand();

Listing 2

Listing 1

System.out.println("You selected the " + command + " popup menu
item!");
}

}

A:
Q:

A:

Q:
A:

Q:
A:

Q:

Q:
A:

S Y S - C O N R A D I O

JDJ: Paul, what do you think about
wireless and the state of the industry
in five years?
Chambers: There’s certainly going to be
a lot of change. The telecommunications
industry is really going to go through a
revolution over the next five years. Two
markets we really need to look at are the
North American market and the rest of the
world, which really complies with another
set of standards. Ultimately they’re going
to converge in about four years.

The sort of standards we’ve got in
Europe – it’s packet switched so it can just
do data, but not fantastically. It’s got a lim-
ited bandwidth, currently about 14 kilobits
per second, if you’ve got good reception,
etc. Where that’s going is, by the end of
the year there’ll be several networks up
and several devices. There’s actually sever-
al devices available now through a tech-
nology called GPRS [General Packet Radio
Service]. GPRS gets a bandwidth up to 115
kilobits per second. Now that’s pretty nice
for applications, and you can start doing
real stuff. The other aspect of it, though, is
that it’s packet switched rather than circuit
switched. This is the first step into real
TCP/IP packet-switched information so that
we’re running voice over IP and gateway
and back end, too. For all these things the
existing networks are based on PSTN [Pub-
lic Switched Telephone Network], the exist-
ing circuit-switched networking protocols.
The big change is that, as well as the band-
width – it’s always on, like any TCP/IP,
LAN-based networking packet switch.

This introduces the concept of being
able to have push models as well as pull
models in the mix. Another thing that
bandwidth will introduce, though, is that
J2ME is going to become very important.
So the idea of having smarter applications
running on mobile devices, based on Java
and messaging back the services and
technologies like JMS. JMS is being rolled
out there in terms of lightweight JMS, just
as J2ME is a lightweight Java form of plat-
form. So you’re going to start to see
smarter applications as well as the wire-
less application protocol (WAP), which is
essentially a markup language, albeit a
binary one, which is more efficient for the
narrow bandwidth.

You’ll get around some current limita-
tions of the applications. I’ve used them
back in Europe – I’ve sat on the train trying
to send e-mail and what happens? A cof-
fee man comes along and interrupts you.
You put your device down and go through
a tunnel. You lose the signal and when you
come back to your application – lo and
behold, it’s gone! All that you did…

In an ideal world what you want is an
asynchronous model – you want a smart
Java application. Possibly you want an
embedded database – and nice caching
locally – and asynchronous messaging
back to the server so you can have asyn-
chronous tasks, asynchronous messaging,
which will get you over the problem of
interruption. You know, it’s not a continu-
ous service when you’re mobile. So
there’s going to be some nice, interesting
applications once you’ve got this GPRS.
That’s happening this year. It’ll really start
making an impact next year in terms of
the mobile Internet.

In the U.S., what you’ve got currently is
Code Division Multiple Access (CDMA). I
talked recently with Sprint. They’re run-
ning out of a lot of WAP applications in
America. So you guys aren’t too far
behind. I know the U.S. predictions have
been a bit behind, but not that far behind.
There’s a lot of work going on. There’s not
a lot of clients throwing out WAP applica-
tions, but Sprint got to the point where
they’ve got national coverage now with
their network, which means they’ve got
huge coverage and it’s based on CDMA.
They’re going to take out CDMA next year
and put in CDMA 2000. Now CDMA 2000
is like GPRS; many of the technologies are
the same. Qualcomm actually owns a lot
of the technologies that GPSR and CDMA
2000 are based on. Again, I guess the
bandwidth is packet switched. It’s going to
be really nice for mobile applications and
data, etc. That’s what’s happening over the
next 18 months.

JDJ: With the way chips are coming
out with Java embedded in them, a
number of companies have had
some great announcements of their
products. How do you see that coin-
ciding with J2ME? Are they comple-

mentary? Or do the actual embedded
Java chips in the hardware replace
J2ME? Does J2ME’s role decrease?
Chambers: I think that remains to be
seen. There are three sort-of solutions I’ve
seen out there, which may compete, or
may coexist. So you’re going to see chips
that are designed to run bi-code instruc-
tions on these mobile devices. You’re also
going to see that some companies are try-
ing to take the standard JDK – the stan-
dard J2SE platform – and not reduce func-
tionality but squeeze it into small enough
footprints so the device is just above the
very small things like smart phones.
They’re all competing for their own space,
along with J2ME, but J2ME does have
some limitations, and ideally you wouldn’t
want to do that. You don’t want to reduce
the functionality of the application, etc.
The only reason you’re doing it is because
of the limitations of the devices. The other
thing is the capabilities – the bang for the
buck. Obviously, it goes up. All these
things are going to converge, and we’ll
just have to see how over the next few
years.

JDJ: It sounds like JMS is making
headway into both wireless and the
J2EE platform. How do you see that
evolving into this lightweight form
that’s going to be supported in the
devices?
Chambers: Obviously, devices need to
communicate, applications need to com-
municate, and there’s going to be a num-
ber of mechanisms to do that. JMS is an
interesting mechanism for doing that
because it has a more loosely coupled
messaging capability.

Take a mobile application talking to a
J2EE application server. As I said before,
you get interrupted, you lose your signal,
and so on. JMS is really good – guaranteed
delivery, batched queues. It sits there when
the connection comes back up, and your
application will reconnect and synchronize
the messaging, get the message back to
the application. Of course, you’ve got the
smart application back there in terms of the
J2EE application, so it’s going to play a key
role. I think you’re going to see things like
CORBA running over the air, so it’s going

to be there as well. You’re going to see I/O
type communications as well. As the band-
width goes up, downloading servlets, run-
ning these different object protocols and so
on over the bigger bandwidth is going to
be possible – it’s going to happen.

JDJ: Are these some of the things
you’re seeing GemStone’s partners
doing with JMS and integrating
GemStone as well?
Chambers: Two companies we’re work-
ing with are working within this space
(probably more, but these are two I can
say). SoftWired, JMS vendors from
Switzerland and Zurich, has mobile, light-
weight JMS for mobile devices, so that’s
currently available. They’re starting to do
wireless applications with them. Similarly,
SpiritSoft, based in London, is a JMS ven-
dor. They’re working on lightweight JMS
as well, and doing mobile applications in
the financial industry. This is the real thing.
It’s really happening.

JDJ: You mentioned your partners.
How exactly are you using the wire-
less? How are you building wireless
applications with GemStone/J?
Chambers: It’s this mutual architecture,
this aggregator. It’s an EAI engine – it
aggregates information at the back end
and now it’s aggregating at the front end
as well. What you want to do is write your
application once, protect that investment
from technology change and from all the
different channels you have to deliver
front-end technology to. What we’re see-
ing is that people are relying on Gem-
Stone behind these sorts of applications –
these wireless applications – for robust-
ness 24/7, for smartness in terms of
caching. When you lose a connection it
comes back. GemStone’s got all that. The
user state is currently cached – we make
sure you don’t lose the work, so really, it’s
just a robust, scalable thing at the back
end. Do it once, distribute it to any chan-
nels. It’s a channel-neutral platform so it’s
doing no more than you’d expect from a
J2EE server, eh? Scalable, robust, lots of
transactions, lots of uses.

Java COM

84 OCTOBER 2000

Interview...with Paul Chambers PART 2
CTO OF GEMSTONE SYSTEMS (EUROPE), A BROKAT COMPANY AN INTERVIEW BY JASON WESTRA

jwestra@vergecorp.com

alexr@fiorano.com

We’ll build on the EJB created in the
June JDJ article “Building Enterprise Beans
with VisualAge for Java” (Vol. 5, issue 6).

The Tutorial
In that article you learned how to cre-

ate an EJB bean (i.e., how to build part of
the server-side piece of the Web applica-
tion). Here we’ll show you how to gener-
ate an access bean from the EJB bean
previously created. Then we’ll show you
how to import that bean into WebSphere
Studio to generate a JavaServer Page
(JSP) file, HTML file and servlet to build
the client side of the application.

Step 1: Prepare for the tutorial.
To follow this tutorial you’ll need the

following products installed:
• IBM VisualAge for Java, Enterprise

Edition, v3.02
• IBM WebSphere Studio, v3.0
• DB2 v5.2 with fixpack 11 or higher,

DB2 v6.1 with fixpack 2 or higher or
Oracle 8.05

Make sure you’ve applied the appro-
priate fixpacks for DB2. They can be
downloaded from www.ibm.com/soft-
ware/data/db2/udb/support.html.

Building the Server Application
You can use the EJB Development

Environment of VisualAge for Java to

develop and test enterprise beans that
conform to the distributed component
architecture defined in Sun Microsys-
tems’ EJB specification.

Now we’ll generate an access bean
from the EJB bean you created from the
June tutorial.

Step 2: Create the access bean.
In the EJB Development Environment

an access bean is a JavaBean wrapper for
EJB beans; an access bean is typically used
by client programs, such as JSP files,
servlets and sometimes other enterprise
beans. Access beans adapt enterprise
beans to the JavaBeans programming
model and hide the complexities involved
when programming directly to the EJB
home and remote interfaces. Access beans
can provide fast access to enterprise beans
by maintaining a local cache of their
attributes. They also make it possible to
consume an enterprise bean in much the
same way that you’d consume a JavaBean.
1. In the Enterprise Beans pane of

the EJB Development Environment,
right-click the Account EJB. This is the
bean you created using the earlier
tutorial.

2. Select Add > Access Bean. The Create
Access Bean SmartGuide opens.

3. In the EJB group field make sure that
BANK is entered.

4. In the Enterprise Bean field make
sure that Account is entered.

5. In the Access bean type field select
Copy Helper for an entity bean from
the drop-down menu. (Create a copy
helper access bean when you want
the EJB bean attributes to be used in
the creation of JSP files. Copy helpers
cache data so that only one request
is made to the EJB server.)

6. Click Next.
7. In the Select home method for zero

argument constructor field, select
findByPrimaryKey(AcctKey).

8. Make sure that initKey_primaryKey
is the initial property, and that the
converter is indicated as None.

9. Click Next.
10. Make sure that balance is the enter-

prise bean, that copy helper is
checked and that the converter is
indicated as None.

11. Click Finish to generate the access
bean.

12. In the Enterprise Beans pane right-
click Account and select Generate >
Deployed Code to update the EJB
bean’s deployed code.

13. In the Projects workspace double-
click the AccountAccessBean class.
The AccountAccessBean class opens
in a VisualAge for Java browser.

14. Select the BeanInfo tab. In the Fea-
tures pane right-click and select Gen-
erate BeanInfo class from the popup
menu. Close the AccountAccessBean
browser. The AccountAccessBean-

V I S U A L A G E R E P O S I T O R Y

Developing Web Applications Using
VisualAge for Java and WebSphere Studio

WRITTEN BY
ANITA HUANG &

TIM DEBOER I
n the September Java Developer’s Journal (Vol. 5, issue 9) we
discussed the tools available in VisualAge for Java and Web-
Sphere Studio for building and debugging Web applications.
This month we demonstrate how to use these tools to build
a simple Web site that allows users to access their bank
accounts using an Enterprise JavaBean.

Build the client side of an application Part 2

Java COM

86 OCTOBER 2000

V I S U A L A G E R E P O S I T O R Y

Java COM

88 OCTOBER 2000

BeanInfo class now appears in your work-
space. You’ll need to have access to these
properties when using WebSphere Studio to
generate a JSP file from the access bean.

Building the Client Application
You’ve created an access bean to wrap the

EJB bean, so now we can create the client part
of the Web application (the JSP and HTML files
and a servlet that uses the access bean) using
WebSphere Studio.

Step 3: Export the access bean to WebSphere
Studio.

First you must export the access bean from
VisualAge for Java to WebSphere Studio, using
VisualAge for Java’s EJB Development Environ-
ment to export it as an EJB client JAR file.
1. In the EJB Development Environment of

VisualAge for Java, right-click Account in the
Enterprise Beans pane. Select Export >
Client JAR. The Export to an EJB Client JAR
File SmartGuide opens.

2. In the JAR file field enter the following fully
qualified path:

<X:\WebSphere\Studio>\projects\SimpleEJB\-
servlet\<AccessBean.jar>

where X:\WebSphere\Studio is the directory in
which you installed IBM WebSphere Studio
and AccessBean.jar is the client JAR file that
you want to export.

3. Make sure that beans and .class are selected.
(Deselect .java and resource if they are
selected.)

4. Click Finish.

Step 4: Import the client JAR file into WebSphere
Studio.

In WebSphere Studio you must create a
project to contain the generated servlet, JSP
files and HTML files. Once you’ve created the
project, you can import the JAR file into it.
1. Place the following JAR file in WebSphere

Studio’s class path or on the Windows NT
system class path:

<X:\IBMVJava>\eab\runtime30\ivjejb302.jar

where X:\IBMVJava is the directory in which
VisualAge for Java is installed.

2. Start WebSphere Studio.
3. In the Welcome to IBM WebSphere Studio

dialog, select Create a New Project. In the
New Project dialog enter SimpleEJB in the
Project Name field and click OK.

4. The SimpleEJB project is now open.
5. Right-click the servlet folder under Simple-

EJB and select Insert > File. The Insert File
dialog opens.

6. Select the Use Existing tab, then click Browse
to locate the AccessBean.jar file. Click OK.
The servlet folder now contains the Access-
Bean.jar file.

FIGURE 1 Modified HTML page

V I S U A L A G E R E P O S I T O R Y

Step 5: Use WebSphere Studio to gener-
ate an HTML file, JSP file and servlet
from the access bean.

Now you can use WebSphere Studio’s
JavaBean Wizard to generate an HTML
file, JSP file and servlet from the access
bean.
1. Select the SimpleEJB project in Web-

Sphere Studio and choose Tools >
Wizards > JavaBean Wizard. The Java-
Bean Wizard opens.

2. Make sure that netbank.AccountAc-

cessBean appears in the JavaBean
pane. Click Next. The Web Pages page
of the JavaBean Wizard opens.

3. Make sure that both Create an input
page and Create a results page are
selected. Click Next. The Input Page
page of the JavaBean Wizard opens.

4. Select the initKey_primaryKey prop-
erty. Select the entire initKey_prima-
ryKey line and click Change. The
Change Details dialog opens. In the
Caption field enter Account number.

Click OK. Click Next. The Results Page
page of the JavaBean Wizard opens.

5. Select the balance property. Select the
entire balance line and click Change.
The Change Details dialog opens. In
the Caption field enter Current bal-
ance. Click OK. Click Next. The Meth-
ods page of the JavaBean Wizard
opens. Don’t select anything. Click
Next. The Session page of the Java-
Bean Wizard opens.

6. Select Yes and store it in the user’s ses-
sion. Click Next. The Finish page of
the JavaBean Wizard opens.

7. Click Rename. In the Rename dialog
type netbank in the Package Name
field, and type accessBeanServlet in
the Prefix field. Click OK.

8. In the JavaBean Wizard click Finish. A
customized HTML file, JSP file and
servlet are generated from the
Account access bean.

Step 6: Customize the HTML file.
You can use the Page Designer in

WebSphere Studio to customize the
HTML and JSP files.
1. In WebSphere Studio right-click ac-

cessBeanServletInput.html and select
Edit with > Page Designer. The Web-
Sphere Page Designer launches open
to accessBeanServletInput.html.

2. Modify the HTML page to look like
Figure 1.

3. Save the revised HTML page.

Step 7: Customize the JSP file.
Page Designer’s advanced HTML edi-

tor also allows easy insertion of JSP tag-
ging. We’ll add error handling to the gen-
erated JSP page.
1. In WebSphere Studio right-click access-

BeanServletResults.jsp and select Edit
> Page Designer. Page Designer opens
to accessBeanServletResults.jsp.

2. Modify the JSP page to look like Fig-
ure 2.

3. We need to add a try/catch block in
the JSP page since access bean meth-
ods can fire RemoteExceptions. In the
JSP page position the cursor directly
beneath the Account Balance text.
Select Insert > JSP Tags > Scriptlet. The
Script editor opens.

4. In the empty pane add the code:

try {

5. Click OK.
6. In the JSP page position the cursor in

the HTML space directly beneath the
HTML table containing the text Your
current balance is: Select Insert > JSP
Tags > Scriptlet. The Script editor opens.

7. In the empty pane add the code:

} catch (Exception e) {

Java COM

90 OCTOBER 2000

FIGURE 2 Modified JSP page

FIGURE 3 Completed JSP page

V I S U A L A G E R E P O S I T O R Y

AUTHOR BIOS
Anita Huang is currently

working on IBM’s
WebSphere Developer
Domain site, providing
in-depth samples and

tutorials that incorporate
the WebSphere software
platform for e-business.

Previously, she worked on
the VisualAge for Java

Information Development
team, focusing primarily

on componentry to build
enterprise applications.

Tim deBoer currently
develops tools to build

applications that run on
WebSphere Application

Server. He previously
worked with the VisualAge
for Java Technical Support

group, providing support
to enterprise developers
working with VisualAge

for Java. deboer@ca.ibm.com
anitah@ca.ibm.com

Java COM

92 OCTOBER 2000

out.println("Not available at this
time");
}

8. The completed JSP page should look
like Figure 3.

9. Save accessBeanServletResults.jsp and
close WebSphere Page Designer.

Step 8: Export the servlet source (.java)
to VisualAge for Java.

To modify the generated servlet
source, export the source to VisualAge
for Java and start the Remote Access to
Tool API. Then, from WebSphere Studio,
send the source to VisualAge for Java.
1. In VisualAge for Java select Window >

Options > Remote Access to Tool API.
Click Start Remote Access to Tool API,
then click OK.

2. Make sure that the netbank package in
the SimpleEJB project exists in Visu-
alAge for Java as an open edition (other-
wise the class can’t be transferred cor-
rectly from WebSphere Studio). In the
VisualAge for Java project workspace
right-click the netbank package and
select Manage > Create Open Edition.

3. In WebSphere Studio highlight access-
BeanServlet.java (this file is contained
in the servlet folder).

4. Select Project > VisualAge for Java >
Send to VisualAge. The Send to Visu-
alAge dialog opens.

5. Select the SimpleEJB project. Click
OK.

You’ve now finished building an end-
to-end Web application using VisualAge
for Java and WebSphere Studio.

Running / Testing the Sample
Application

To run and test the sample Web
application, first publish the Web appli-
cation using WebSphere Studio, then
start the Web and EJB servers with Visu-
alAge for Java to run the application.
Finally, test the application using your
Web browser.

Step 9: Publish the sample Web applica-
tion.

Use WebSphere Studio to publish the
sample so you can test the application
in VisualAge for Java. Publishing allows
your code to be used by other compo-
nents. Complete the following:
1. Check all of the files in WebSphere

Studio. Right-click the SimpleEJB
project and select Check In.

2. In WebSphere Studio select Tools >
Publishing Options, then click the
Advanced tab and select Default Pub-
lishing Targets.

3. Set the HTML path to that of your

Web resources path (i.e., <X:\IBMVJa-
va>\Ide\project_resources\IBM Web-
Sphere Test Environment\hosts\de-
fault_host\default_app\web, where
X:\IBMVJava is the directory in which
VisualAge for Java is installed).

4. Click OK when completed.
5. Publish the SimpleEJB project:

• Select View > Publishing. (If you
don’t see http://localhost in the
Publishing view, right-click Test
and select Insert > Server. The
Insert Server dialog opens. In the
Server name field enter http://
localhost and click OK.)

• In the right pane of WebSphere Stu-
dio right-click Test and select Pub-
lish Whole Project. The Publishing
Options dialog opens.

• Make sure the options in Figure 4
are set.

• Click OK to publish only the modi-
fied files. Accept all defaults by
clicking Yes after each prompt.

Step 10: Prepare to run sample Web
application.

Use VisualAge for Java to run the Web
application. Complete the following:
1. Start the WebSphere Test Environ-

ment by choosing Workspace > Tools
> Launch WebSphere Test Environ-
ment. Check the Console window to
make sure the WebSphere Test Envi-
ronment is launched.

2. Start VisualAge for Java’s Persistent
Name Server and EJB Server to pre-
pare to run the EJB application:
• In the Workbench select the EJB

tab.
• Right-click the BANK EJB group

and select Add To > Server Configu-
ration. The EJB Server Configura-
tion dialog opens.

• Right-click Persistent Name Server
and select Properties.

• In the Properties for Persistent Name
Server dialog enter the database URL
for your database in the Data Source
field. (If you’ve used DB2’s First
Steps, enter jdbc:db2:sample to use
the SAMPLE database.)

• In the Connection Type field select
the JDBC driver for your database.
(If you’re using DB2, select COM.-
ibm.db2.jdbc.app.DB2Driver.)

• Click OK.
• In the Servers pane of the EJB Serv-

er Configuration dialog right-click
Persistent Name Server and select
Start Server.

• In the Console window look for the
open for business message that
indicates that the Persistent Name
Server is running.

• In the EJB Server Configuration dia-
log right-click EJB Server and select
Properties.

• In the Properties for EJB Server dia-
log enter your database URL in the
Data Source field. (Once again,
enter jdbc:db2:sample if you’re
using the DB2 SAMPLE database.)

• In the Connection Type field select
the JDBC driver for your database.
(If you’re using DB2, select COM.-
ibm.db2.jdbc.app.DB2Driver.)

• Click OK.
• In the Servers pane of the EJB Serv-

er Configuration dialog right-click
EJB Server and select Start Server.

• In the Console window look for the
open for business message that
indicates that the EJB Server is run-
ning.

Step 11: Use your Web browser.
Launch your Web application in your

Web browser.
1. Launch your Web browser.
2. Specify the following URL: http://

localhost:8080/accessBeanServerIn-
put.html.

3. Enter a valid account number that
you created earlier using the Test
Client (see the June JDJ article). Click
Submit. The JSP results page will dis-
play the account’s current balance.

Congratulations! You now have a
running end-to-end Web application.
When you want to deploy it, use the
WebSphere Application Server. (See the
WebSphere Application Server help doc-
umentation for details.)

Conclusion
WebSphere Studio and VisualAge for

Java contain all the tools required to
build and debug a complete end-to-end
Web application. By using these devel-
opment products, which support a role-
based development model, developers
have the tools required to carry out their
specific responsibilities.

FIGURE 4 Publishing options

Java COM

94 OCTOBER 2000

The Oracle Internet Platform embeds the Oracle8i JVM within the

Oracle8i database and Oracle Internet Application Server (iAS) as the

enterprise Java engine for Oracle. This article explains Oracle8i JVM’s base

architecture, its support for J2EE APIs and its latest performance and

architecture enhancements.

E-Business Platform Base Architecture
The base architecture, the foundation on which a Java platform’s

building blocks are implemented, is typically the VM architecture: mem-
ory management, execution environment and so on. As an e-business
platform, it should provide robustness, reliability and scalability across
all system components. One key question: What makes the Oracle8i
JVM different from other VMs?

Session-Based Architecture
In a break from the design of most client Java Virtual Machines, the

Oracle8i JVM has promoted a session-based architecture in which each
user executes within a session. From the user’s perspective, each session
executes Java with its own dedicated JVM that has its own containers and
its own Java global variables and garbage collector. Under the covers, ses-

sions are scheduled and run on a dynamically allocated set of processes
(or threads on Windows/NT) – typically less than 10% of the number of
connected users – using Oracle’s multithreaded server (MTS). The MTS
architecture provides robustness, as a replacement process is automati-
cally started by the Oracle 8i runtime in the event that process fails. By iso-
lating sessions, this architecture allows parallel and independent process-
ing, memory allocation and garbage collection (see Figure 1). On the other
hand, sharing of code, metadata, immutable statics and read-only objects
across sessions reduces session memory footprint and activation time.

J D J F E A T U R E

WRITTEN BY KUASSI MENSAH

FIGURE 1 Oracle8: JVM architecture

Java COM

96 OCTOBER 2000

Session Isolation vs Sharing
Java objects held in static variables between calls are, by default,

completely private to the users session. The 8i JVM maintains the
complete context of each session so that isolation is an implicit part of
the system, not one that’s enforced by the programming model. Ses-
sion isolation doesn’t allow the sharing of user “state” or contexts. Ora-
cle8i JVM sessions can share read-only objects across sessions
through JNDI. This feature is used internally for now to maximize
sharing of metadata and will be exposed in the future for use by user
programs as well.

Connectivity
The total number of MTS processes required to run tens of thousands

of connected users sessions is dynamically adjustable and approximate-
ly equals the number of concurrently active sessions (approximately less
than 10% of the number of connected users).

Session IIOP
Session IIOP provides Oracle JVM with the ability to create and

access objects in multiple sessions from a single client and services that
handle multiple server objects in multiple sessions. This allows the JVM
to distinguish objects based on the session in which they are activated.
The standard CORBA doesn’t have the notion of “sessions.” Oracle8i JVM
does. It achieves this by extending the IIOP protocol, using a Session
IIOP component tag within the object reference (the OMG assigned
component tag ID for session IIOP is 0x4f524100). Session IIOP still looks
the same, on the wire, as regular IIOP. URLs have the following form:
sess_iiop://<host>:<port>:<service>/:session/name.

Storing Java in the Database
Java sources, classes and resources are stored within the database

in internal structures called libunits. Libunits are managed by the Ora-
cle8i runtime in the same way Oracle’s PL/SQL packages are managed,
providing LRU tradeout of Java classes and keeping track of class
dependencies during development and updating of Java applications.
Users can place Java code in the repository graphically using Oracle
JDeveloper or by a command-line utility (loadjava). Classes can be
resolved and updated dynamically without interrupting or recycling
the 8i JVM.

Consistent JDK Across Platforms
This base architecture, currently based on Sun’s JDK 1.2.1, is identical on

every platform where Oracle8i or iAS is ported, providing a consistent Java
deployment environment across more than 60 platforms.

E-Business Base Infrastructure Services
The Object Management Group has defined one of the most exhaus-

tive standards-based infrastructure services via CORBA services. Several
key services in this collection have been respecified as is or redesigned
by Sun Microsystems as part of Enterprise Java infrastructure services.
Among them are Naming, Transaction, Security and Persistence. These
services form the foundation for higher-level services required by e-
business applications. Oracle8i JVM incorporates these services.

Naming: Built-in JNDI
As a central naming repository, Oracle8i JVM implements JNDI 1.2

API using database tables for secure, robust and scalable storage of
namespace mappings. This JNDI implementation provides a server-side
SQL-based driver (SQL SPI) for accessing JNDI directly from within the
server tier and a client-side RMI/IIOP-based driver (RMI/IIOP SPI) for
accessing the JNDI service from Java clients. It’s used for binding or reg-
istering servlets and JSPs, CORBA/EJB components and non-Java
CORBA Objects. It also allows the sharing of read-only objects across
sessions and the registration of services at database start-up, typically
IIOP and HTTP. The CORBA CosNaming interface has been implement-
ed on top of the JNDI namespace for pure CORBA users.

RMI/IIOP
For robustness, scalability and ease of programming (no IDL), Ora-

cle8i JVM has implemented RMI over IIOP based on Visigenics Caffeine;
it also provides support for method overloading and Java exception han-
dling through serialization.

Java Transaction API `
Oracle8i JVM implements the Java Transaction API (JTA) 1.0 standard,

including client- and server-side transaction demarcation, two-phase coor-
dination, multitier transaction context propagation, single-phase commit
optimization, and support for JDBC as well as CORBA/EJB transaction
managers. It also provides support for JDBC, HTTP, RMI/IIOP clients and
mixed client types.

Security
Oracle8i JVM security is based on:

• A built-in Oracle8i database security: execution rights required on
stored Java classes as well as on SQL execution

• Java 2 Security, including granting or revoking fine-grain or collections
of Java permissions to roles

• Execute rights required on published objects in JNDI
• SSL (SSL 3.0) authentication and non-SSL login authentication based

on a challenge response protocol using DES 48 bit encryption

Query and Persistence
Object-relational mapping is achieved by:

• Either direct access to Oracle8i’s rich database object types that are
SQL Types, Object Types, Variable Arrays (varrays), Nested Tables, XML
documents and SQL Types exposed to Java (JPublisher) through
JDBC/SQLJ or Java Stored Procedures

• Or by using transparent persistence mechanisms like the Persistence
Service Interface for CMP EJB in conjunction with persistence man-
agers that implement such an interface (PSI Reference Implementa-
tion, Oracle Business Components Java (BC4J) – O/R mapping and
third party O/R mapping) (see Figure 2.)

Component-Based Applications Architecture
The main characteristic of a component-based application is the

loose coupling between layers, allowing reuse, partitioning and minimal
change impact. Typically there are four logical layers to a partitioned
application: View, Application-Model, Domain-Model and Database
(see Figure 3).

FIGURE 2 Persistency mechanisms

Java COM

98 OCTOBER 2000

View Layer
Components that implement the user interface handle the GUI

screens and Web pages using GCI scripts, static HTML, Perl scripts,
ActiveX, Visual Basic, Java Client Application, Java Applet, Servlets and
JavaServer Pages (JSPs).

Servlets are server-side Java classes that execute independently or
call back-end components (EJBs, CORBA Server Objects, Java/PLSQL
Stored Procedures, other Servlets) and generate coarse-grained dynam-
ic content, typically used as a UI controller or application controller, in
conjunction with JSP (serving as the View). Servlets can be chained or
pipelined to extend Web server functionality.

JSPs are used to dynamically generate the actual UI or Web pages by
assembling coarse-grained dynamic content from servlets and back-
end components (EJBs, CORBA Server Objects, Java/PLSQL Stored Pro-
cedures) with fine-grained content from Java Scriptlets and static
HTML.

Oracle Servlet Engine
Oracle8i JVM embeds a Servlet 2.2-compliant engine suitable pri-

marily for stateful servlets. All servlets activated by one client are in
the same session, along with EJBs, CORBA Server Objects, Java Stored
Procedures, the default server-side JDBC connection and the SQL
engine. The first servlet request creates a session for the client and
eventually (on request) an HTTPsession object per stateful servlet
context; further requests are routed to the same session using cookies
or URL rewrites. OSE supports authentication and access control as
specified by Servlet 2.2 through Realms and URL security mappings in
the JNDI namespace.

Servletclasses are loaded, stored as library units (libunits) in the data-
base repository, then resolved and published in the JNDI namespace
where they can be looked up and invoked through HTTP. For example:
http://cavist.com:8080/cellar/welcome.html<path_info>.

public class Hello extends HttpServlet {
public void doGet(HttpServletRequest rq, HttpServletResponse rsp){
rsp.setContentType("text/html");
PrintWriter out = rsp.getWriter();
out.println("<HTML><HEAD><TITLE>Welcome</TITLE></HEAD>");
out.println("<BODY><H3>Welcome!</H3>");
out.println("<P>Today is "+ new java.util.Date()+
".</P>");
out.println("</BODY></HTML>");

}
}

OracleJSP Engine
Oracle8i JVM embeds a JSP engine (JSP 1.1- compliant) on top of the

OSE, the Oracle HTTP server (powered by Apache Jserv) and all Web-
enabled Oracle products (Oracle Portal, Portal-to-go, Oracle JDevelop-
er). The Oracle JSP engine supports SQLJ within JSP Scriplets, data

access beans for connecting and querying an Oracle database, custom
tag handlers and the ability to format results of a JSP using XSL. It emu-
lates some Servlet 2.2 features on Servlet 2.0 engines (JServ) using a
globals.jsa file:

<HTML><HEAD><TITLE>Welcome</TITLE></HEAD>
<BODY><H3>Welcome!</H3>
<P>Today is <%= new java.util.Date() %>.</P>
</BODY></HTML>

Oracle HTTP Server Powered by Apache and Extension Mods
Oracle8i JVM ships with an HTTP server (based on Apache) as the

default HTTP listener for serving fine-grained static HTML and stateless
servlets (JServ). Oracle extends Apache with extension modules (Mods):
• mod_ose: Dispatches HTTP requests for stateful, coarse-grained

dynamic contents to the Oracle servlet engine
• mod_plsql: Dispatches HTTP requests for stateless PL/SQL and Java

stored procedures; maintains database connections specified by
DADs (database access descriptors)

Application Model Layer
This layer hosts components that implement stateful business

processes (such as a shopping cart), use case controllers or view con-
trollers. It also hosts stateless service components (e.g., rate engine, tax
calculator). They can be implemented using servlets and stateful and/or
stateless session EJBs, as well as CORBA server objects when infrastruc-
ture services are invoked programmatically. The componentization of
this layer allows users with different interfaces to access the same com-
ponents using different types of client interfaces.

Domain Objects or Data Component Layer
This layer hosts components that model and implement coarse-grained

domain objects, also called data components or business components.
Coarse-grained business objects are designed as root objects and

dependent objects using a design pattern (Façade). They can be imple-
mented as simple persistent Java objects (when they don’t require their
own transaction and security services) but also as CORBA server objects
(programmatic invocation of transaction and security services) or entity
EJB (declarative transaction, security services and persistence calls by
EJB container).

Oracle8i JVM EJB Architecture
The EJB component model allows the design and implementation of

complex business components:
• Stateless business services: tax calculator, rate engine, for example
• Stateful business processes/use cases: shopping cart, for example
• Persistent, uniquely identifiable, coarse-grained, application-indepen-

dent business entities: customer, portfolio, purchase order, for example

The EJB container in Release 3 of Oracle8i JVM is fully compliant
with the EJB 1.1 specification, which mandates the support of entity
EJB (bean-managed and container-managed persistency), including a
standard and provider-specific XML deployment descriptors. The con-
tainer is activated within the session address space along with all col-
located Java components, including the server-side JDBC driver and
the SQL engine. EJB’s classes are stored within the shared libunits
repository (the database), then published and looked up from the dis-
tributed objects subdomain of the JNDI namespace; they run as trans-
actional Java objects when invoked locally from collocated compo-
nents (like servlets) or as CORBA server objects when invoked remote-
ly through RMI/IIOP.

Persistence Service Interface
For container-managed persistence EJB, Oracle has defined a per-

sistence service interface (PSI) to handle the relationship between the
Oracle8i JVM EJB container and the persistence manager (see Figure 2).
The container handles the allocation and management of EJB objects,

FIGURE 3 Application architecture and J2EE programming model

Java COM

100 OCTOBER 2000

transparent service invocation (transaction and security) and bean
deployment. The persistence manager handles the allocation and man-
agement of beans; their loading, storing and caching; and JTA synchro-
nization for commits/rollbacks.

Oracle8i JVM ships with a PSI reference implementation (PSI-RI) that
provides a simple attribute to column mapping: persistence manager.
Oracle’s JDeveloper and third-party vendors provide PSI-compliant,
complex mapping persistence managers. By providing a common way
for dealing with persistence managers (à la EJB 2.0), PSI allows their
replacement with little impact.

Object Request Broker
Oracle8i JVM embeds a 100% Java CORBA 2.0-compliant ORB (Visi-

broker 3.4) that can be activated within MTS processes and shared by
multiple sessions while preserving their context isolation. It extends the
IIOP protocol and IORs with session ID (for routing), implements the
CosNaming JNDI URL interface (for easy and consistent naming) and
allows programmatic invocation of all infrastructure services.

Data Access and Management Layer
JDBC Drivers

Oracle8i JVM supports four main JDBC drivers:
1. Oracle call interface (OCI) client driver (type 2): Must be installed on

the Client. Partly Java, it allows the use of Oracle’s Advanced Network-
ing options, Net8 tracing and logging; components are deployed on a
middle tier but an applet can use this driver.

2. Thin client driver (type 4): All Java, and uses Net8/TTC database pro-
tocol over Java sockets; applets must use this driver, as can compo-
nents deployed on a middle tier.

3. Thin server driver (type 4): For applications that need to access other
databases through JDBC, from within Oracle8i.

4. Server-side driver (“kprb”): Runs inside the Session address space,
incurring no network round-trip; all components, EJBs, Servlets and
Java Stored Procedures deployed on an Oracle8i’s tier must use this
driver.

An ultrathin driver (“proxy”), under development at the time of this
writing, will act as a client-side proxy for the “kprb” driver, reducing
memory footprint on the client side.

Object Types
Oracle JDBC drivers materialize database objects as instances of Java

objects using either a default mapping (object as oracle.sql.STRUCT) or
explicit customized mapping (SQLData interface). For example:

ResultSet rs = stmt.executeQuery ("select VALUE(p) from
CUSTOMER_TAB p");
while (rs.next ())
{

// retrieve the STRUCT
oracle.sql.STRUCT cust_struct = (STRUCT)rs.getObject(1);
// list the attributes
Object cust_attrs[] = cust_struct.getAttributes();
// string attribute in Object
String name = (String) cust_attrs[0];
// embedded object
oracle.sql.STRUCT address = (STRUCT)cust_attrs[1];
//embedded array
oracle.sql.ARRAY = (ARRAY)cust_attrs[2];

}

Enhanced Support for JDBC and SQLJ
Oracle8i JVMs’ JDBC drivers have complete support for JDBC 2.0

including the XA Resource API, basic statement caching that minimizes
cursor creation and tears down overhead, LONG functions on LOBs,
JDBC/SQLJ support for VARCHAR functions on CLOBs and support for
PL/SQL table of scalars.

In addition, numerous performance improvements have been made
at the server-side JDBC driver level and for access to objects.

SQLJ
A higher level than JDBC API, which allows embedding static SQL in Java:

#sql {UPDATE emp Set sal = 3000 WHERE ename = ‘SCOTT’};

SQLJ provides support for selecting a single row directly into Java
variables, named and positional iterators for accessing the results set of
a multirow query and connection to multiple schemas at the same time,
although an SQL statement executes in a single connection context:

#sqlj [ctx1] departments = {select dept_name from departments}

Oracle8i JVM enhances its SQLJ implementation by supporting all the
JDBC 2.0 features as outlined in the forthcoming ISO standard, including
structured types, scrollable iterators, datasources, batching, row
prefetching and interoperability with JDBC 2.0 connection pooling. It
also provides three different runtime versions: (1) a generic runtime that
can be used with any Oracle JDBC driver, (2) a runtime optimized for JDK
1.1 environment, and (3) a runtime optimized for JDK 1.2 environment.

JDBC versus …
String name;
int id=131341;
float salary=6000;
PreparedStatement pstmt =conn.preparedStatement

("select ename from emp where empno=? And sal>?");
pstmt.setInt(1,id);
pstmt.setFloat(2,salary);
ResultSet rs = pstmt.executeQuery();
while (rs.next()) {
name=rs.getString(1);
System.out.println("Name is: " + name);}
rs.close();
pstmst.close();

… SQLJ
String name;
int id=131341;
float salary=6000;
#sql (select ename into :name from emp where empno=:id and
sal>:salary);
System.out.println("Name is: " + name);

Java Stored Procedures
Oracle also provides Java stored procedures. They implement com-

pute-intensive procedures (as opposed to SQL-intensive procedures for
which PL/SQL is more suitable). Java stored procedures can be used in
the same ways as PLSQL: as stored functions, stored procedures, user-
defined functions and database triggers.

Stored procedures are standards based, portable across vendor and
secure (access control). They can be invoked through the JDBC by EJBs,
servlets and JSPs or called by non-Java and legacy modules or servers
(PLSQL packages, Forms, Reports, etc.). Using the same call specifica-
tion or wrapper as PL/SQL, Java stored procedures allow transparent
migration to Java (transparently replacing PL/SQL code with Java, when
recommended).

Any public static methods of Java classes can be published and called
or invoked as Java stored procedure.

public class Foo {
public static String prependHello(String tail) {

return "Hello " + tail;
}

}

Java COM

102 OCTOBER 2000

To create a PL/SQL wrapper to expose/publish/register the method
and make it callable:

CREATE FUNCTION PREPENDHELLO (s VARCHAR2) RETURN VARCHAR2 AS
LANGUAGE JAVA NAME 'Foo.prependHello(java.lang.String)
return java.lang.String';

E-Business Deployment Platform
Runtime Performance: Bytecode Compilation

By default, Java applications run interpreted. A Java interpreter suc-
cessively fetches, decodes and executes Java bytecodes. The fetching and
decoding steps can be avoided by natively compiling the bytecode; also,
the compilation process can apply some code optimization techniques.
Oracle8i JVM offers native compilation and optimization.

Oracle8i JVM Accelerator
Oracle8i JVM provides a native bytecode accelerator that allows a

deployed Java bytecode (.jar or .class) to be translated into platform-
independent C code. The C code is then compiled using platform-spe-
cific compilers (optimized for their respective platforms), yielding fully
optimized platform-dependent Oracle8i JVM-specific native shared
libraries, and run as natively compiled code. Performance improve-
ments range several orders of magnitude.

Deployment Schema
Most Java platforms on the market promote a three-tier deployment

with all Java and Web components on a middle tier, typically an applica-
tion server, and data access and management components on the data-
base tier (see Figure 4).

Oracle Internet Platform Deployment Scenario
Being present in both Oracle8i and iAS servers, Oracle8i JVM allows flex-

ible Web and Java components partitioning across tiers. The following four

deployment scenarios are simply examples. Customers can make variations
in the way components are deployed over the Oracle Internet Platform.

1. Single-tier deployment: In this schema all components are deployed
on the Oracle8i tier. The benefits include local calls, hence reduced
network traversal. This scenario scales to tens of thousands of con-
current users against a single Oracle8i instance using the high-con-
nectivity capabilities of the shared server MTS architecture. Since Ora-
cle8i JVM and its containers are the same on the iAS tiers, beyond this
level of scalability offloading the Oracle8i tier on iAS tiers will provide
additional scalability.

2. View layer on iAS; other layers on Oracle8i: A Web site activity consists
primarily (75%) of static HTML and stateless servlet requests; this can
be served by a farm of iAS/Apache HTTP servers. The remaining 25%,
involving stateful servlets, stateless session EJBs, persistent EJBs or
CORBA servers, and JDBC/SQLJ/Java stored procedures, can be
served by an 8i tier.

3. View and application layers on iAS; domain layers and data access
and manipulation on 8i: In this scenario static HTML, stateless and
stateful servlets, and stateful and stateless session EJBs run on the iAS
tier while entity EJBs or persistent CORBA server s objects reside on
the 8i tier along with JDBC/SQLJ/Java stored procedures. Since
domain components are data-oriented, running inside the database
will provide efficient execution.

4. Traditional middle-tier deployment: In this scenario Web/EJB/-
CORBA components are deployed on the iAS tier while data access
and management modules (JDBC/SQLJ and Java stored procedures)
reside on the Oracle8i tier. iAS tiers can be duplicated to support the
requirements of hundreds of thousands of concurrent users.

Conclusion
By extending its support to J2EE containers and programming mod-

els, and enhancing the architecture and performance of Oracle8i JVM,
the Oracle Internet platform offers a scalable, secure and robust end-to-
end Enterprise Java platform for developing and deploying e-business
applications.

AUTHOR BIO
Kuassi Mensah is a senior product manager in Oracle’s server technology division and leads the product
management team of the Java products group.

kuassi.mensah@oracle.com

FIGURE 4 Deployment over the 8i and iAS tiers

alexr@fiorano.com

J A V A & S W I N G

Working with Swing

WRITTEN BY
PAUL ANDREWS O

ne of the strengths of Java is the abundance of standard
APIs for doing everything from enterprise-level data
access to manipulating data structures, sending and
receiving e-mail and building GUIs.This broad sweep of
APIs makes choosing how to implement the various
parts of an application much simpler, but it also presents
a problem: How do you best use the API?

Experiences with the Swing Library during development of a splash screen component

Javadocs – the raw API documentation
– are never enough for this purpose
because they concentrate on each class or
interface as a separate entity from the
other classes. API specifications aren’t
much better because they deal with the
minutiae of the API and with being a cor-
rect specification of how everything
works. The most useful tool I’ve found for
any newcomer to an API is the Java Tutori-
als (www.java.sun.com/docs/books/tut-
orial/index.html). These Tutorials guide
you to correct and efficient use of an API
rather than swamping you with detail.

This article extends the Tutorials and
addresses some of the issues a develop-
er might come across when writing an
application that uses the Swing API. In it
I will dive below the surface of the Swing
and AWT toolkits to build a simple but
useful component called a splash screen.
I’m barely scratching the surface here,
but you should learn some useful tech-
niques and have a component that’s
useful in its own right.

What Is a Splash Screen?
A splash screen is the small window

that appears while a program is loading. It
usually has none of the decorations nor-
mally associated with a window, appears
centrally positioned on the screen, and
contains a graphic announcing the appli-
cation and company and often some kind
of progress indicator. Figure 1 provides an
example.

My primary aim here is to produce a
component that encapsulates most of
the detail required to create such a win-
dow so it’s easy for other people to
include its functionality in their own

applications. Essentially, it’ll be an
extension to the Swing Library.

Getting Started
First I need to select a component

that will produce a top-level window
with no decorations. A quick trawl
through the API documentation reveals
that JWindow is the class I should be
using. Creating one of these is simple
enough, but I’m going to add specialized
functionality later so I may as well sub-
class JWindow so I can encapsulate that
functionality in one place:

import javax.swing.JWindow;
public class SplashScreen extends
JWindow {
…
}

Next I want to center the window on
the screen. This involves a brief trip back
into the AWT class libraries to use the
Toolkit class. Ordinarily I wouldn’t use
this class directly, but it’s the source of
some useful information – in this case
the screen dimensions. The Toolkit class
itself is abstract, but can be used to
locate an actual implementation. Once I
have the implementation I can use it
and information about the window size
to position the window properly. To get
the window size before it’s visible, I just
have to “pack” it. This code has to be
executed after the window has been
fully populated; the SplashScreen con-
structor would be a good place:

pack();
Dimension screenDim = Toolkit.get-

DefaultToolkit().getScreenSize();

FIGURE 1 A splash screen

Java COM

104 OCTOBER 2000

J A V A & S W I N G
setLocation((screenDim.width – get-

Size().width) / 2,
(screenDim.height –

getSize().height) / 2);

Creating and showing my window now
is simple. In the following example I pass in
the application’s main window as a parent:

SplashScreen ss = new
SplashScreen(this);
ss.setVisible(true);

Once I’m finished with the window I’ll
need to remove it from the screen. I could
do this with setVisible(false), but this will
leave the window consuming resources
(e.g., memory). As I’ll never be showing it
again, I may as well destroy it so that those
resources are released. Merely removing
my references to the window isn’t suffi-
cient as Swing has internal references that
will prevent it from being garbage-collect-
ed. To remove Swing’s references I need to
call dispose() on the window, so I’ll add a
remove() function to my class that does
this for me. This function will be made to
perform other tasks later:

public void remove() {
dispose();

}

Filling in the Window
So far, I have a window with no con-

tents, so I need to decide what contents
to add and how to lay them out. Earlier I
suggested that a splash screen should
contain a graphic and a progress indica-
tor. I’d also like to add a title as a sepa-
rate component and lay out these com-
ponents from top to bottom in the win-
dow. All products that my company
ships will use the same layout for their
splash screens, providing a consistent
look across the whole product range, so
I’m free to enforce the policy by encap-
sulating the code that produces it inside
my class. If I wanted a more flexible
splash screen, I could expose the stan-
dard JWindow functions to allow users
to specify a layout manager and to add
components as they want. To prevent
my applications having to implement
boilerplate code to create the splash
screen, I’ll implement as much as possi-
ble inside my class. For this reason my
constructor will accept two JCompo-
nents for the title and progress indicator
(more on why later) and the name of a
graphic file to use as the main graphic:

public SplashScreen (JFrame parent,
String graphicName, JComponent

title,
JComponent progress) {…}

Graphics is one area where the Java
GUI libraries provide excellent facilities.
My graphic file can be a JPEG, a GIF or
even an animated GIF. All I have to do is
create an ImageIcon, passing it the URL
of a file containing the image:

ImageIcon i = new ImageIcon(url);

Resources
One issue: What location does this

URL point to? I need a location that I can
guarantee will exist wherever my appli-
cation is installed. One of the best loca-
tions to fulfill this requirement is some-
where on the classpath. Even better
would be to put the graphic in the same
place as the rest of the classes that make
up this specific application because
then I can ship everything the applica-
tion needs in one simple package.

This tells me where I should put the
graphic, but I won’t know where my
application package will be installed.
How can I discover what URL to use to
actually load the graphic? Fortunately,
the class loader will do this for me.
Classloaders can be used to load any-
thing off the classpath – not just classes.
First I need to get a classloader – the one
that was used to load me. This is easy
enough to do. Every object has a method
to get its class and hence its classloader.
Then I use that classloader to obtain the
URL of my graphic:

public URL getURL(String path) {
ClassLoader cl =

getClass().getClassLoader();
return cl.getResource(path);

}

Now I pass that URL to the construc-
tor of ImageIcon as in the previous
example.

This is a generally useful facility, so in
the interests of reuse I should really
encapsulate all this code in a class.
ImageIcon has a constructor that takes a
string – which it assumes is a filename. I
could simply subclass ImageIcon and
make the same constructor look for a
resource of that name. If that fails, it can
default to assuming the string is a file-
name. If I implement the other Image-
Icon constructors too, I can use my new
class wherever ImageIcon has been used
already without breaking that code – plus
I get the benefit of being able to distrib-
ute my application, along with the
resources it needs, as one JAR file.

Now adding the resulting image to
my display is simple. I just create a JLa-
bel to hold it, then add the JLabel to my
splash screen. I’ll do this in my con-
structor so the code will look like this:

i = new ResourceImageIcon(path);
image = new JLabel(i);
add(image);

Careful analysis of running code shows
I have a problem. The resources used by
the instance of ImageIcon aren’t complete-
ly released when I dispose of the window
because ImageIcon caches the image data
so that subsequent requests for the same
image are faster. Worse, if the image is an
animated GIF, the thread that performs the
animation continues to run. To prevent
this, I need to call flush() on the actual
image. I may as well add this code to the
remove function, which now becomes:

public void remove() {
i.getImage().flush();
dispose();

}

Swing and Threads
What about that progress indicator? I

need to update the contents of one com-
ponent, and this is one reason I passed
in the components themselves rather
than just, say, strings. If I make the
progress indicator a JLabel, I can hold a
reference to it in the object that created
the SplashScreen instance and update
its contents by calling setText(). I could
use any other JComponent that I can
dynamically change the contents of, but
this will do for my purposes.

The only problem is that the Swing
library isn’t thread-safe once a compo-
nent has been realized. In other words, I
can’t call setText() from any thread other
than the Swing thread once I’ve made
the splash screen visible. This would nor-
mally be okay because I’d be updating
the display in response to a Swing event
that would automatically ensure I was in
the Swing thread. However, it’s likely that
I’ll update my progress indicator in
response to external events (connecting
to servers, reading data, etc.), so how do
I ensure that I call setText() from the
right thread? Fortunately, Swing provides
two functions that allow me to queue up
work for it: SwingUtilities.invokeLater()
and SwingUtilities.invokeAndWait(). The
functions take a Runnable as an argu-
ment that’s responsible for actually per-
forming the work. The Runnable needs
to have access to any data it needs at the
time it runs. In the following example I
call invokeAndWait() from a member
function of a class called MainWin. The
MainWin object holds a reference to the
JLabel I’m using to display the message
and to the text the Runnable will need to
change the contents of the JLabel. The
JLabel reference is called progress and
the message reference is called status.

Java COM

106 OCTOBER 2000

SwingUtilities.invokeAndWait (new
Runnable() {

public void run() {

progress.setText(MainWin.this.sta-
tus);

}
});

I’ll have to use this mechanism
whenever I want to update the splash
screen once it’s been made visible. This
includes the call to “remove,” which will
remove it from the screen. I could put
this code inside any function of Splash-
Screen that I think might be called from
outside the Swing event loop. This
would allow users of SplashScreen to
call its methods without having to think
about whether they’re inside or outside
the event loop. If I did this, I’d have to be
very careful that I didn’t cause dead-
locks and that the data I needed didn’t
change between the user calling my
function and Swing invoking the
Runnable.

Tidying Up
So far so good, but the window still

looks a little messy. I’d like to center the
title and the progress indicator and
make sure that the colors coordinate

properly with the graphic. The code to
do this appears in Listing 1. I also think a
border should be added to the original
wish list for the appearance of the splash
screen – I can do this using the Border-
Factory class. Plus the image needs to be
centered and the components need to
be laid out in the right order, running
from top to bottom: title, image and
then the progress indicator. The code to
do all this appears in Listing 2.

Keeping Busy
Finally, I’d like to display a watch cur-

sor while the pointer is over the window
and prevent the user from interacting
with it. Adding such a cursor can be
done simply by adding the following line
of code to the constructor for the splash
screen:

setCursor(Cursor.getPredefinedCur-
sor(Cursor.WAIT_CURSOR));

The easiest way to prevent user inter-
action with the splash screen is to make
the glass pane visible. This pane, which
is transparent, is a standard part of
Swing windows. It’s used to intercept
events that would normally go to the
window itself – for the splash screen I
only need to intercept mouse events.

The following code in the constructor of
the splash screen will do it:

getGlassPane().addMouseListener(new
MouseAdapter() {});
getGlassPane().setVisible(true);

For windows that already have the key-
board focus, I’d also have to intercept key
events, but as the splash screen will never
receive the focus, this code is sufficient.

Summary
I’m now satisfied that I have a compo-

nent that fulfills my criteria for a splash
screen. This useful component can be
used straight out of the box, but more
important – for the purposes of this article
– it explores some of the real-world prob-
lems that GUI developers encounter when
writing a Swing application. In particular:
• Using the Toolkit to obtain informa-

tion about the screen
• Using a classloader to locate resources
• Ensuring that all components are freed

up when they’re no longer needed
• Accessing Swing components from

other threads
• Fine-tuning the appearance of a window
• Putting a window into a “busy” state

J A V A & S W I N G

AUTHOR BIO
Paul Andrews has worked

for over 20 years as a
computer scientist in the
IT industry and has been
actively programming in

Java since 1997.
Paul specializes in the

design of large distributed
OO architectures for the

implementation of secure
e-commerce systems.

public void createSplashScreen()
{

// Create a JLabel for the title. Ensure that the text is
// centered within the JLabel and that the JLabel is cen-
// tered within the window.
JLabel _title = new JLabel("SplashScreen Test v3.1", JLa-

bel.CENTER);
_title.setAlignmentX(Component.CENTER_ALIGNMENT);

// Set the color of the text in the title. The background
// will be that of the window itself.
_title.setForeground(Color.green);

// ditto for the progress indicator
progressLabel = new JLabel("Connecting to server...", JLa-

bel.CENTER);
progressLabel.setAlignmentX(Component.CENTER_ALIGNMENT);
progressLabel.setForeground(Color.green);

// Create the SplashScreen
splashScreen = new SplashScreen(

this, "net/jools/test/SplashTest.jpg", _title, progressLa-
bel);

// Set the background color of the SplashScreen
splashScreen.getContentPane().setBackground(Color.white);

// Show the SplashScreen
splashScreen.setVisible(true);

}

public SplashScreen(…)
{

JComponent pane = (JComponent)getContentPane();

// Use a vertical BoxLayout to arrange the components
// top to bottom.

pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));

i = new ResourceImageIcon(splashName);

// To ensure that the image is centered horizontally, cen-
// ter it in the JLabel and center the JLabel in the win-

dow.
image = new JLabel(i, JLabel.CENTER);
image.setAlignmentX(Component.CENTER_ALIGNMENT);

// Add a border to the window
pane.setBorder(BorderFactory.createCompoundBorder(

BorderFactory.createRaisedBevelBorder(),
BorderFactory.createLoweredBevelBorder()));

// The order in which the components are now added to the
// window is important. First the title, then the image,
// then the footer.

// To ensure that the title component spans the full width
// of the window set its maximum sizes. The caller is
// responsible for its alignment
if (title != null) {

title.setMaximumSize(
new Dimension(Integer.MAX_VALUE, Integer.MAX_VALUE));
pane.add(title);

}

pane.add(image);

if (footer != null) {
footer.setMaximumSize(

new Dimension(Integer.MAX_VALUE, Integer.MAX_VALUE));
pane.add(footer);

}
…

}

Listing 2

Listing 1

paul@jools.net

Java COM

108 OCTOBER 2000

Q:
A:

Q:
A:

Q: Q:

A:

Q:
A:

Q:
A:

S Y S - C O N R A D I O

CodeMarket is a global software develop-
ment network where software developers
and development managers can find and
purchase freelance development work
and ready-to-run Java components. It
recently formed a partnership with Para-
Soft, a provider of software error-preven-
tion and error-detection solutions. Para-
Soft’s Jtest, a Java unit testing tool, will be
the standard tool by which all compo-
nents outsourced or purchased through
CodeMarket will be tested.

JDJ: While your partnership with
ParaSoft seems like a step in the
right direction, how do you ensure
the richness of the requirements you
receive from customers? What
methodology does CodeMarket use
to ensure the accurate definition of
requirements?
Mitchell: That’s an excellent question.
One of CodeMarket’s best features is that
the buyer can select from a number of dif-
ferent bids. Each bid from a developer
contains a use case that illustrates, from
the client’s point of view, how the objects
behave and the top-level architecture of
the proposed solution. So a buyer can
compare not only the price and delivery
date, but also the quality and intelligence
of the proposed solution. This allows
developers to showcase their object-ori-
ented analysis and design skills and gives
the stronger, more experienced ones pric-
ing power in the marketplace.

JDJ: Software unit testing certainly
enhances the quality of the software
component. However, how does
CodeMarket define quality?
Mitchell: Quality is an ephemeral notion.
It’s difficult to put quality in a box. Code-

Market’s goal is to allow developers to
work on projects that interest them, to do
the work offsite, and to protect them from
feature-creep by establishing a fixed deliv-
erable. For buyers, quality means that the
code works as designed, handles unex-
pected inputs gracefully, and conforms to
some stylistic conventions that encourage
maintainability and readability, such as
limiting method length and the number of
return statements in a method. For devel-
opers, quality means a lot of things. It
means being able to establish a reputation
for producing excellent code and deliver-
ing it on time. It means knowing the
ground rules won’t change from project to
project. And it means having the incen-
tives and the structure in place to encour-
age a mentality of getting it right the first
time – building quality code now rather
than wading through spaghetti a week
before release tracking down bugs identi-
fed in system- and user-acceptance test-
ing.

CodeMarket uses ParaSoft’s award-win-
ning JTest for unit testing. JTest performs
automated static, black-box, white-box and
regression testing on all submitted code.
Our partnership with ParaSoft allows us to
offer the only service that provides an
independent measure of development
completion. CodeMarket pays the devel-
oper as soon as his or her code passes
the JTest unit test, and that prevents the
he-said/she-said, feature-creep and
accounts-receivable collection headaches

so common among freelancers today.
That’s the quality that every developer
who is making the leap into the freelance
economy appreciates most of all.

JDJ: What are the various test statis-
tics and matrices provided by Para-

Soft JTest? Do you deliver the test
results, statistics and matrices output
to the customer as part of the final
deliverable? Is there an auditing
process that ensures CodeMarket’s
accountability concerning the testing
process?
Mitchell: ParaSoft’s JTest provides a com-
prehensive suite of analytics and test out-
puts. Information about JTest is available
at www.parasoft.com. Clients receive all
test reports with the delivered code. The
delivery of the JTest reports establishes
that testing has been completed and the
code meets the specified requirements.

JDJ: Do the components outsourced
to CodeMarket for development
need to be self-contained, or can
they have dependencies on the cus-
tomer’s own components?
Mitchell: The issue of what makes a
good CodeMarket project is an interesting
one. Clearly some work is better suited to
outsourcing than others. For instance,
code that’s proprietary or is part of the
core competitive advantage of a company
is probably not something you want to
outsource over the Internet. Similarly, a
project that requires access to specific
large or difficult-to-duplicate resources
(like a robotics controller for an assembly
line) are not great candidates for out-
sourcing. CodeMarket doesn’t expressly
prevent someone from listing such a
project but, as with any tool, CodeMarket

works best on tasks for which it was
designed. CodeMarket is the best way to
develop fixed-cost, unit-tested loosely cou-
pled Java components.

JDJ: As CodeMarket develops these
components and ships them to its

customers, what happens with com-
ponent-integration testing? Is that
the responsibility of the customer?
What does CodeMarket do to ensure
component-dependency resolution
and interoperability with customer-
developed components?
Mitchell: After a registered freelance
developer (www.codemarket.com/reg.jsp)
submits code to us and we unit test it, the
code is delivered to the buyer, who’s
responsible for application integration and
further testing. Studies by the prestigious
Software Engineering Institute indicate that
unit testing reduces the cost of integration
and system testing dramatically by elimi-
nating structural faults at the unit level.

JDJ: How is the ParaSoft JTest tool
going to help CodeMarket define
standards of completeness and oper-
ability?
Mitchell: JTest provides an objective
standard for completeness and operability.
It’s that objectivity that’s most valuable to
buyers and developers. By establishing a
standard level of quality and having that
standard monitored and enforced by an
independent third party, both developers
and buyers are protected and empowered
to produce excellent software.

JDJ: What are the additional types of
testing services you provide as part
of your component delivery contract?
Mitchell: In addition to JTest testing,
CodeMarket allows developers to attach
guarantees to their code. If after delivery
the buyer is dissatisfied, CodeMarket will
arbitrate any dispute that might arise. This
gives buyers another measure of confi-
dence in the process and lets developers,
who know their code is good, charge a
premium for the buyers’ added peace of
mind.

INTERVIEWER BIO
Israel Hilerio is a member of a leading

e-commerce firm in Dallas,Texas,
focusing on Web-based e-commerce
applications and new architectures.

Interview...with Shawn Mitchell
PRESIDENT OF CODEMARKET AN INTERVIEW BY ISRAEL HILERIO

israel@sys-con.com

“CodeMarket allows developers to attach
guarantees to their code. If after delivery
the buyer is dissatisfied, CodeMarket will

arbitrate any dispute that might arise”

Java COM

110 OCTOBER 2000

Java COM

138 OCTOBER 2000

Quadbase Ships
EspressChart 3.0
(Santa Clara, CA) – Quadbase
Systems Inc. announced Espress-
Chart 3.0 for creating and pub-
lishing dynamic graphic charts
on the Web. Features include
support for multiple data sources

for a single
chart, user
definable leg-

ends, translucent chart elements,
annotation for chart elements,
2D/3D scroll and zoom, and for-
eign language support.
www.quadbase.com

Tidestone Announces
Formula One 8.0
(Overland Park, KS) – Tidestone
Technologies, Inc., announced an
upgrade to its Formula One for
Java development tool. This
upgrade will ease the integration
of its spreadsheet engine with
outside data
sources when
building Web-based reporting
and analysis applications. The
new version 8.0 will include the
ability to bind spreadsheet cells
to a much wider variety of input
documents.
www.tidestone.com

RSW Software Launches
EJB-test 2.2
(Waltham, MA) – RSW Software
Inc. announced the availability
of EJB-test 2.2 for testing the scal-
ability and functionality of Enter-
prise JavaBeans (EJB) middle-tier
applications. Significant
enhancements to EJB-test
include
advanced
session
bean support, dynamic graphing
capabilities and extended func-
tional testing.
www.rswsoftware.com

Introducing Versant
Developers Suite 6.0
(Fremont, CA) – Versant Corp.
announced the beta release of Ver-
sant Developers Suite (VDS) 6.0.
The new version extends the data-
base’s current
query capabili-
ties through the addition of multi-
attribute queries, and incorporates
support for the latest industry
standards. The Java Developer’s
Interface (JVI) features advanced
caching, synchronization and
object mapping, and complies
with Sun’s Java Data Objects.
www.versant.com

Compuware Delivers
DevPartner 2.0
(Farmington Hills, MI) – Com-
puware Corporation has begun
shipping NuMega DevPartner 2.0
Java Edition.

DevPartner Java Edition sup-
ports a wide range of application
servers, servlet engines and Web
servers on Solaris,
Linux and Win-
dows 2000. It inte-
grates with IBM VisualAge for Java,
Symantec Visual Café, Borland
JBuilder and Oracle JDeveloper.
www.compuware.com

META Group and
Flashline.com Join Forces
(Cleveland, OH) – Flashline.com
Inc. and META Group Inc.
have joined forces to
advance component-based
development. Through a con-
tent-sharing agreement, the
companies will provide organiza-
tions with resources to assist with
the research,
development
and deployment of component-
based software for business.
www.flashline.com
www.metagroup.com

Brokat Closes Acquisition
of GemStone
(Stuttgart, Germany) – Brokat AG,
a leading provider of software
platforms for e-business solu-
tions, has concluded the acquisi-
tion of Beaverton, OR-based
GemStone Systems, Inc. Gem-
Stone will oper-
ate as a wholly
owned subsidiary of Brokat AG,
and will continue to distribute its
products and services under its
existing brand name.
www.brokat.com

Instantiations Ships VA
Assist Enterprise/J 1.5
(Portland, OR) – Instantiations,
Inc., has begun shipping VA
Assist Enterprise/J 1.5. New fea-
tures include full compatibility
with VisualAge for Java 3.5,
enhanced repository manage-
ment power tools, enhanced GUI

building pro-
ductivity tools

and powerful new code develop-
ment tools. The VA Assist Enter-
prise/J 1.5 update is available for
download from the company’s
Web site.
www.instantiations.com/assist.

Czech Travel Site Chooses
GemStone
(Beaverton, OR and Praha, Czech
Republic) – GemStone Systems,
Inc., announced that its high-
performance, multiti-
er application server
software was chosen
as the architectural platform for
Fractal.cz, a fast-growing Czech
B2C and B2B site for purchasing
airline tickets and other travel
services using the Internet and
wireless application protocol
(WAP).
www.FractalCorp.com
www.gemstone.com

DLJdirect Selects Quest’s
SharePlex for Oracle Software
(Irvine, CA) – Quest Software,
Inc., announced that the DLJdi-
rect online brokerage house
chose Quest’s SharePlex for Ora-
cle data-
base repli-
cation soft-
ware to maintain 24/7 database
availability for the online trading
application.

SharePlex is an innovative
log-based database replication
product that enables users to
replicate large volumes of data-
base activity over local- or wide-
area networks. The replicated
copy can be used as a fully acces-
sible Oracle instance, yet it does-
n’t consume high amounts of sys-
tem and network resources.
www.quest.com

Second Edition of O’Reilly’s
Java Network Programming
Released
(Sebastopol, CA) – Java Network
Programming by Elliotte Rusty
Harold is a complete introduc-
tion to developing network pro-
grams (both applets and applica-
tions) using Java. It covers every-
thing from net-
working funda-
mentals to
Remote Method
Invocation (RMI).
It includes chap-
ters on TCP and
UDP sockets, multicasting proto-
col and content handlers, and
servlets. This second edition also
includes coverage of Java 1.1, 1.2
and 1.3. New chapters cover mul-
tithreaded network program-
ming, I/O, HTML parsing and
display, the Java Mail API, the
Java Secure Sockets Extension,
and more.
www.oreilly.com

(Santa Clara, CA) – WebGain
Inc. announced VisualCafé
Enterprise Edition V. 4.0. New
features include pro-
ductivity wizards that
streamline the develop-
ment and deployment
of Enterprise JavaBeans,

and provide an improved Java
compiler and debugger. It’s also
tightly integrated with BEA’s

WebLogic family of applica-
tion servers and will soon
support the iPlanet applica-
tion server.
www.webgain.com

WebGain Ships VisualCafe 4.0

(Billerica, MA) – SilverStream
Software, Inc., has acquired
Excelnet Systems Limited, a UK-
based e-business services com-
pany. The addition of Excelnet
will expand SilverStream’s abili-
ty to meet worldwide demand
for comprehensive e-business
solutions gener-

ated by the availability of the
SilverStream eBusiness Plat-
form.

The Excelnet group will sup-
plement SilverStream’s existing
global customer service organi-
zation in Europe, the Middle
East and Africa (EMEA).

www.silverstream.com

SilverStream Acquires Excelnet

